Abstract

Adaptive optics systems are being applied in ever more challenging environments, for example, the projection of lasers over long horizontal paths through the atmosphere. These long atmospheric paths corrupt the signal received from the beacon and typically yield highly scintillated received wave fronts. Tilt estimation for controlling the fast steering mirror in these systems is complicated by the presence of branch points in the scintillated received wave fronts. In particular, correlation between the tilt and the projected beam’s centroid error at the target has been observed in horizontal laser beam projection experiments. The presence of this correlation indicates that better tracking performance should be achievable. We compare the performance of four estimation schemes applied to tilt estimation in a horizontal laser projection system. It is demonstrated that all four schemes underestimate the tilt required to return the laser beam to a target in highly scintillated environments. A method of correcting this tilt is presented, and the expected performance improvement is quantified.

© 2001 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wave-front sensing and deformable-mirror control in strong scintillation

Michael C. Roggemann and Alan C. Koivunen
J. Opt. Soc. Am. A 17(5) 911-919 (2000)

Scintillation-induced jitter of projected light with centroid trackers

Richard B. Holmes
J. Opt. Soc. Am. A 26(2) 313-316 (2009)

Atmospheric-compensation experiments in strong-scintillation conditions

Charles A. Primmerman, Thomas R. Price, Ronald A. Humphreys, Byron G. Zollars, Herbert T. Barclay, and Jan Herrmann
Appl. Opt. 34(12) 2081-2088 (1995)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription