Abstract

We describe an approach to modeling the ocean’s inherent optical properties (IOPs) that permits extensive analyses of IOPs as the detailed composition of suspended particulate matter is varied in a controlled manner. Example simulations of the IOP model, which includes 18 planktonic components covering a size range from submicrometer viruses and heterotrophic bacteria to microplanktonic species of 30-µm cell diameter, are discussed. Input data to the model include the spectral optical cross sections on a per particle basis and the particle-number concentration for each individual component. This approach represents a significant departure from traditional IOP and bio-optical models in which the composition of seawater is described in terms of a few components only or chlorophyll concentration alone. The simulations illustrate how the separation and understanding of the effects of various types of particle present within a water body can be achieved. In an example simulation representing an oligotrophic water body with a chlorophyll a concentration of 0.18 mg m-3, the planktonic microorganisms altogether are the dominant particulate component in the process of light absorption, but their relative contribution to light scattering is smaller than that of nonliving particles. A series of simulations of water bodies with the same chlorophyll a concentration but dominated by different phytoplankton species shows that composition of the planktonic community is an important source of optical variability in the ocean.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription