Abstract

We describe an approach to modeling the ocean’s inherent optical properties (IOPs) that permits extensive analyses of IOPs as the detailed composition of suspended particulate matter is varied in a controlled manner. Example simulations of the IOP model, which includes 18 planktonic components covering a size range from submicrometer viruses and heterotrophic bacteria to microplanktonic species of 30-µm cell diameter, are discussed. Input data to the model include the spectral optical cross sections on a per particle basis and the particle-number concentration for each individual component. This approach represents a significant departure from traditional IOP and bio-optical models in which the composition of seawater is described in terms of a few components only or chlorophyll concentration alone. The simulations illustrate how the separation and understanding of the effects of various types of particle present within a water body can be achieved. In an example simulation representing an oligotrophic water body with a chlorophyll a concentration of 0.18 mg m-3, the planktonic microorganisms altogether are the dominant particulate component in the process of light absorption, but their relative contribution to light scattering is smaller than that of nonliving particles. A series of simulations of water bodies with the same chlorophyll a concentration but dominated by different phytoplankton species shows that composition of the planktonic community is an important source of optical variability in the ocean.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
    [CrossRef]
  2. R. C. Smith, K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr. 23, 260–267 (1978).
    [CrossRef]
  3. H. R. Gordon, A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery—a review,” in Lecture Notes on Coastal and Estuarine Studies, R. T. Barber, C. N. K. Mooers, M. J. Bowman, B. Zeitzschel, eds. (Springer-Verlag, New York, 1983).
    [CrossRef]
  4. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10,749–10,768 (1988).
    [CrossRef]
  5. A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentrations in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
    [CrossRef]
  6. H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
    [CrossRef]
  7. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
    [CrossRef]
  8. N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1975).
  9. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, Cambridge, England, 1994).
    [CrossRef]
  10. C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  11. R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, Fla., 1995).
  12. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
    [CrossRef]
  13. K. L. Carder, R. G. Stewart, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
    [CrossRef]
  14. M. Kishino, M. Takahashi, N. Okami, S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).
  15. C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
    [CrossRef]
  16. A. Bricaud, D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
    [CrossRef]
  17. R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, H. H. Zwick, “Optical water quality model of Lake Ontario 1. Determination of the optical cross sections of organic and inorganic particulates in Lake Ontario,” Appl. Opt. 20, 1696–1703 (1981).
    [CrossRef] [PubMed]
  18. R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, D. V. Pozdnyakov, “Estimation of organic and inorganic matter in inland waters: optical cross sections of Lakes Ontario and Ladoga,” J. Great Lakes Res. 17, 461–469 (1991).
    [CrossRef]
  19. E. A. Gallie, P. A. Murtha, “Specific absorption and backscattering spectra for suspended minerals and chlorophyll a in Chilko Lake, British Columbia,” Remote Sensing Environ. 39, 103–118 (1992).
    [CrossRef]
  20. C. D. Mobley, D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550–560 (1997).
    [CrossRef]
  21. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  22. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  23. A. Bricaud, A.-L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
    [CrossRef]
  24. D. Stramski, D. A. Kiefer, “Optical properties of marine bacteria,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 250–268 (1990).
    [CrossRef]
  25. D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
    [CrossRef]
  26. Y.-H. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39, 1835–1855 (1992).
    [CrossRef]
  27. A. Morel, Y.-H. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
    [CrossRef]
  28. D. Stramski, R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38, 1347–1364 (1993).
    [CrossRef]
  29. D. Stramski, G. Rosenberg, L. Legendre, “Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface wave focusing,” Mar. Biol. 115, 363–372 (1993).
    [CrossRef]
  30. D. Stramski, A. Shalapyonok, R. A. Reynolds, “Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day–night cycle in natural irradiance,” J. Geophys. Res. 100, 13,295–13,307 (1995).
    [CrossRef]
  31. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  32. A. Bricaud, A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571–580 (1986).
    [CrossRef] [PubMed]
  33. D. Stramski, C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538–549 (1997).
    [CrossRef]
  34. E. J. Terrill, W. K. Melville, D. Stramski, “Bubble entrainment by breaking waves and their effects on the inherent optical properties of the upper ocean,” at Ocean Optics XIV Conference, Kailua-Kona, Haw, 10–13 November 1998, Ocean Optics XIV CD ROM (Office of Naval Research, Washington, D.C., 1998).
  35. R. Iturriaga, D. A. Siegel, “Microspectrophotometric characterization of phytoplankton and detrital absorption properties in the Sargasso Sea,” Limnol. Oceanogr. 34, 1706–1726 (1989).
    [CrossRef]
  36. W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials. Applications to Geology, Astronomy, Chemistry, and Engineering (Academic, New York, 1979).
  37. I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423–9444 (1999).
    [CrossRef]
  38. K. L. Carder, P. R. Betzer, D. W. Eggimann, “Physical, chemical, and optical measures of suspended-particle concentrations: their intercomparison and application to the West African Shelf,” in Suspended Solids in Water, R. J. Gibbs, ed. (Plenum, New York, 1974), pp. 173–193.
    [CrossRef]
  39. P. F. Kerr, Optical Mineralogy (McGraw-Hill, New York, 1977).
  40. M. Jonasz, G. Fournier, “Approximation of the size distribution of marine particles by a sum of lognormal functions,” Limnol. Oceanogr. 41, 744–754 (1996).
    [CrossRef]
  41. S. Vagle, D. M. Farmer, “The measurement of bubble-size distributions by acoustical backscatter,” J. Atmos. Ocean. Technol. 9, 630–644 (1992).
    [CrossRef]
  42. L. M. Proctor, J. A. Fuhrman, “Viral mortality of marine bacteria and cyanobacteria,” Nature (London) 342, 60–62 (1990).
    [CrossRef]
  43. R. Maranger, D. F. Bird, “Viral abundance in aquatic systems: a comparison between marine and fresh waters,” Mar. Ecol. Prog. Ser. 121, 217–226 (1995).
    [CrossRef]
  44. M. Takahashi, P. K. Bienfang, “Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters,” Mar. Biol. 76, 203–211 (1983).
    [CrossRef]
  45. P. G. Davis, D. A. Caron, P. W. Johnson, J. M. Sieburth, “Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: geographic, vertical, seasonal, and diel distributions,” Mar. Ecol. Prog. Ser. 21, 15–26 (1985).
    [CrossRef]
  46. B. C. Cho, F. Azam, “Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone,” Mar. Ecol. Prog. Ser. 63, 253–259 (1990).
    [CrossRef]
  47. W. K. W. Li, P. M. Dickie, B. D. Irwin, A. M. Wood, “Biomass of bacteria, cyanobacteria, prochlorophytes, and photosynthetic eukaryotes in the Sargasso Sea,” Deep-Sea Res. 39, 501–519 (1992).
    [CrossRef]
  48. W. K. W. Li, “Composition of ultraphytoplankton in the central North Atlantic,” Mar. Ecol. Prog. Ser. 122, 1–8 (1995).
    [CrossRef]
  49. A. Morel, Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates. A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
    [CrossRef]
  50. J. Piskozub, D. Stramski, “The use of scattering error in absorption measurement for estimating the scattering phase function of marine phytoplankton,” Program and Abstracts, Ocean Optics XV Conference, Musée Océanographique, Monaco (2000), p. 90.
  51. R. D. Vaillancourt, C. Brown, R. R. L. Guillard, “A taxonomic survey of the optical properties of marine phytoplankton with special emphasis on the backscattering coefficient,” Earth Observing Syst. Trans. Am. Geophys. Union 80(49), 119–120 (2000).
  52. H. R. Gordon, “Mie theory of light scattering by ocean particulates,” in Suspended Solids in Water, R. J. Gibbs, ed. (Plenum, New York, 1974), pp. 73–86.
    [CrossRef]
  53. K. L. Carder, R. G. Steward, P. R. Betzer, J. M. Prospero, “Dynamics and composition of particles from aeolian input event to the Sargasso Sea,” J. Geophys. Res. 91, 1055–1066 (1986).
    [CrossRef]
  54. M. D. Loÿe-Pilot, J. M. Martin, J. Morelli, “Influence of Saharan dust on the rain acidity and atmospheric input to the Mediterranean,” Nature (London) 321, 427–428 (1986).
    [CrossRef]

2000 (1)

R. D. Vaillancourt, C. Brown, R. R. L. Guillard, “A taxonomic survey of the optical properties of marine phytoplankton with special emphasis on the backscattering coefficient,” Earth Observing Syst. Trans. Am. Geophys. Union 80(49), 119–120 (2000).

1999 (1)

I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423–9444 (1999).
[CrossRef]

1998 (3)

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentrations in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
[CrossRef]

H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

1997 (3)

C. D. Mobley, D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550–560 (1997).
[CrossRef]

R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

D. Stramski, C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538–549 (1997).
[CrossRef]

1996 (1)

M. Jonasz, G. Fournier, “Approximation of the size distribution of marine particles by a sum of lognormal functions,” Limnol. Oceanogr. 41, 744–754 (1996).
[CrossRef]

1995 (3)

R. Maranger, D. F. Bird, “Viral abundance in aquatic systems: a comparison between marine and fresh waters,” Mar. Ecol. Prog. Ser. 121, 217–226 (1995).
[CrossRef]

D. Stramski, A. Shalapyonok, R. A. Reynolds, “Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day–night cycle in natural irradiance,” J. Geophys. Res. 100, 13,295–13,307 (1995).
[CrossRef]

W. K. W. Li, “Composition of ultraphytoplankton in the central North Atlantic,” Mar. Ecol. Prog. Ser. 122, 1–8 (1995).
[CrossRef]

1993 (3)

A. Morel, Y.-H. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
[CrossRef]

D. Stramski, R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38, 1347–1364 (1993).
[CrossRef]

D. Stramski, G. Rosenberg, L. Legendre, “Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface wave focusing,” Mar. Biol. 115, 363–372 (1993).
[CrossRef]

1992 (4)

Y.-H. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39, 1835–1855 (1992).
[CrossRef]

S. Vagle, D. M. Farmer, “The measurement of bubble-size distributions by acoustical backscatter,” J. Atmos. Ocean. Technol. 9, 630–644 (1992).
[CrossRef]

E. A. Gallie, P. A. Murtha, “Specific absorption and backscattering spectra for suspended minerals and chlorophyll a in Chilko Lake, British Columbia,” Remote Sensing Environ. 39, 103–118 (1992).
[CrossRef]

W. K. W. Li, P. M. Dickie, B. D. Irwin, A. M. Wood, “Biomass of bacteria, cyanobacteria, prochlorophytes, and photosynthetic eukaryotes in the Sargasso Sea,” Deep-Sea Res. 39, 501–519 (1992).
[CrossRef]

1991 (3)

A. Morel, Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates. A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[CrossRef]

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, D. V. Pozdnyakov, “Estimation of organic and inorganic matter in inland waters: optical cross sections of Lakes Ontario and Ladoga,” J. Great Lakes Res. 17, 461–469 (1991).
[CrossRef]

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

1990 (3)

L. M. Proctor, J. A. Fuhrman, “Viral mortality of marine bacteria and cyanobacteria,” Nature (London) 342, 60–62 (1990).
[CrossRef]

A. Bricaud, D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
[CrossRef]

B. C. Cho, F. Azam, “Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone,” Mar. Ecol. Prog. Ser. 63, 253–259 (1990).
[CrossRef]

1989 (3)

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

K. L. Carder, R. G. Stewart, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

R. Iturriaga, D. A. Siegel, “Microspectrophotometric characterization of phytoplankton and detrital absorption properties in the Sargasso Sea,” Limnol. Oceanogr. 34, 1706–1726 (1989).
[CrossRef]

1988 (2)

A. Bricaud, A.-L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10,749–10,768 (1988).
[CrossRef]

1986 (3)

A. Bricaud, A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571–580 (1986).
[CrossRef] [PubMed]

K. L. Carder, R. G. Steward, P. R. Betzer, J. M. Prospero, “Dynamics and composition of particles from aeolian input event to the Sargasso Sea,” J. Geophys. Res. 91, 1055–1066 (1986).
[CrossRef]

M. D. Loÿe-Pilot, J. M. Martin, J. Morelli, “Influence of Saharan dust on the rain acidity and atmospheric input to the Mediterranean,” Nature (London) 321, 427–428 (1986).
[CrossRef]

1985 (2)

P. G. Davis, D. A. Caron, P. W. Johnson, J. M. Sieburth, “Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: geographic, vertical, seasonal, and diel distributions,” Mar. Ecol. Prog. Ser. 21, 15–26 (1985).
[CrossRef]

M. Kishino, M. Takahashi, N. Okami, S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

1983 (1)

M. Takahashi, P. K. Bienfang, “Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters,” Mar. Biol. 76, 203–211 (1983).
[CrossRef]

1981 (3)

1978 (1)

R. C. Smith, K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr. 23, 260–267 (1978).
[CrossRef]

1977 (1)

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Ahn, Y.-H.

A. Morel, Y.-H. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
[CrossRef]

Y.-H. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39, 1835–1855 (1992).
[CrossRef]

A. Morel, Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates. A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[CrossRef]

Allali, K.

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentrations in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
[CrossRef]

Azam, F.

B. C. Cho, F. Azam, “Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone,” Mar. Ecol. Prog. Ser. 63, 253–259 (1990).
[CrossRef]

Babin, M.

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentrations in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
[CrossRef]

Baker, K. S.

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

R. C. Smith, K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr. 23, 260–267 (1978).
[CrossRef]

Bedhomme, A.-L.

A. Bricaud, A.-L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

Betzer, P. R.

K. L. Carder, R. G. Steward, P. R. Betzer, J. M. Prospero, “Dynamics and composition of particles from aeolian input event to the Sargasso Sea,” J. Geophys. Res. 91, 1055–1066 (1986).
[CrossRef]

K. L. Carder, P. R. Betzer, D. W. Eggimann, “Physical, chemical, and optical measures of suspended-particle concentrations: their intercomparison and application to the West African Shelf,” in Suspended Solids in Water, R. J. Gibbs, ed. (Plenum, New York, 1974), pp. 173–193.
[CrossRef]

Bienfang, P. K.

M. Takahashi, P. K. Bienfang, “Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters,” Mar. Biol. 76, 203–211 (1983).
[CrossRef]

Bird, D. F.

R. Maranger, D. F. Bird, “Viral abundance in aquatic systems: a comparison between marine and fresh waters,” Mar. Ecol. Prog. Ser. 121, 217–226 (1995).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bricaud, A.

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentrations in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
[CrossRef]

Y.-H. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39, 1835–1855 (1992).
[CrossRef]

A. Bricaud, D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
[CrossRef]

A. Bricaud, A.-L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

A. Bricaud, A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571–580 (1986).
[CrossRef] [PubMed]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Brown, C.

R. D. Vaillancourt, C. Brown, R. R. L. Guillard, “A taxonomic survey of the optical properties of marine phytoplankton with special emphasis on the backscattering coefficient,” Earth Observing Syst. Trans. Am. Geophys. Union 80(49), 119–120 (2000).

Bruton, J. E.

Bukata, R. P.

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, D. V. Pozdnyakov, “Estimation of organic and inorganic matter in inland waters: optical cross sections of Lakes Ontario and Ladoga,” J. Great Lakes Res. 17, 461–469 (1991).
[CrossRef]

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, H. H. Zwick, “Optical water quality model of Lake Ontario 1. Determination of the optical cross sections of organic and inorganic particulates in Lake Ontario,” Appl. Opt. 20, 1696–1703 (1981).
[CrossRef] [PubMed]

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, Fla., 1995).

Carder, K. L.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

K. L. Carder, R. G. Stewart, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

K. L. Carder, R. G. Steward, P. R. Betzer, J. M. Prospero, “Dynamics and composition of particles from aeolian input event to the Sargasso Sea,” J. Geophys. Res. 91, 1055–1066 (1986).
[CrossRef]

K. L. Carder, P. R. Betzer, D. W. Eggimann, “Physical, chemical, and optical measures of suspended-particle concentrations: their intercomparison and application to the West African Shelf,” in Suspended Solids in Water, R. J. Gibbs, ed. (Plenum, New York, 1974), pp. 173–193.
[CrossRef]

Caron, D. A.

P. G. Davis, D. A. Caron, P. W. Johnson, J. M. Sieburth, “Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: geographic, vertical, seasonal, and diel distributions,” Mar. Ecol. Prog. Ser. 21, 15–26 (1985).
[CrossRef]

Cho, B. C.

B. C. Cho, F. Azam, “Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone,” Mar. Ecol. Prog. Ser. 63, 253–259 (1990).
[CrossRef]

Claustre, H.

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentrations in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
[CrossRef]

A. Morel, Y.-H. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
[CrossRef]

Davis, P. G.

P. G. Davis, D. A. Caron, P. W. Johnson, J. M. Sieburth, “Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: geographic, vertical, seasonal, and diel distributions,” Mar. Ecol. Prog. Ser. 21, 15–26 (1985).
[CrossRef]

Dickie, P. M.

W. K. W. Li, P. M. Dickie, B. D. Irwin, A. M. Wood, “Biomass of bacteria, cyanobacteria, prochlorophytes, and photosynthetic eukaryotes in the Sargasso Sea,” Deep-Sea Res. 39, 501–519 (1992).
[CrossRef]

Egan, W. G.

W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials. Applications to Geology, Astronomy, Chemistry, and Engineering (Academic, New York, 1979).

Eggimann, D. W.

K. L. Carder, P. R. Betzer, D. W. Eggimann, “Physical, chemical, and optical measures of suspended-particle concentrations: their intercomparison and application to the West African Shelf,” in Suspended Solids in Water, R. J. Gibbs, ed. (Plenum, New York, 1974), pp. 173–193.
[CrossRef]

Farmer, D. M.

S. Vagle, D. M. Farmer, “The measurement of bubble-size distributions by acoustical backscatter,” J. Atmos. Ocean. Technol. 9, 630–644 (1992).
[CrossRef]

Fournier, G.

M. Jonasz, G. Fournier, “Approximation of the size distribution of marine particles by a sum of lognormal functions,” Limnol. Oceanogr. 41, 744–754 (1996).
[CrossRef]

Fry, E. S.

Fuhrman, J. A.

L. M. Proctor, J. A. Fuhrman, “Viral mortality of marine bacteria and cyanobacteria,” Nature (London) 342, 60–62 (1990).
[CrossRef]

Gallie, E. A.

E. A. Gallie, P. A. Murtha, “Specific absorption and backscattering spectra for suspended minerals and chlorophyll a in Chilko Lake, British Columbia,” Remote Sensing Environ. 39, 103–118 (1992).
[CrossRef]

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

Gordon, H. R.

H. R. Gordon, A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery—a review,” in Lecture Notes on Coastal and Estuarine Studies, R. T. Barber, C. N. K. Mooers, M. J. Bowman, B. Zeitzschel, eds. (Springer-Verlag, New York, 1983).
[CrossRef]

H. R. Gordon, “Mie theory of light scattering by ocean particulates,” in Suspended Solids in Water, R. J. Gibbs, ed. (Plenum, New York, 1974), pp. 73–86.
[CrossRef]

Guillard, R. R. L.

R. D. Vaillancourt, C. Brown, R. R. L. Guillard, “A taxonomic survey of the optical properties of marine phytoplankton with special emphasis on the backscattering coefficient,” Earth Observing Syst. Trans. Am. Geophys. Union 80(49), 119–120 (2000).

Harvey, G. R.

K. L. Carder, R. G. Stewart, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

Hilgeman, T. W.

W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials. Applications to Geology, Astronomy, Chemistry, and Engineering (Academic, New York, 1979).

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Ichimura, S.

M. Kishino, M. Takahashi, N. Okami, S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Irwin, B. D.

W. K. W. Li, P. M. Dickie, B. D. Irwin, A. M. Wood, “Biomass of bacteria, cyanobacteria, prochlorophytes, and photosynthetic eukaryotes in the Sargasso Sea,” Deep-Sea Res. 39, 501–519 (1992).
[CrossRef]

Iturriaga, R.

R. Iturriaga, D. A. Siegel, “Microspectrophotometric characterization of phytoplankton and detrital absorption properties in the Sargasso Sea,” Limnol. Oceanogr. 34, 1706–1726 (1989).
[CrossRef]

Jain, S. C.

Jerlov, N. G.

N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1975).

Jerome, J. H.

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, D. V. Pozdnyakov, “Estimation of organic and inorganic matter in inland waters: optical cross sections of Lakes Ontario and Ladoga,” J. Great Lakes Res. 17, 461–469 (1991).
[CrossRef]

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, H. H. Zwick, “Optical water quality model of Lake Ontario 1. Determination of the optical cross sections of organic and inorganic particulates in Lake Ontario,” Appl. Opt. 20, 1696–1703 (1981).
[CrossRef] [PubMed]

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, Fla., 1995).

Johnson, P. W.

P. G. Davis, D. A. Caron, P. W. Johnson, J. M. Sieburth, “Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: geographic, vertical, seasonal, and diel distributions,” Mar. Ecol. Prog. Ser. 21, 15–26 (1985).
[CrossRef]

Jonasz, M.

M. Jonasz, G. Fournier, “Approximation of the size distribution of marine particles by a sum of lognormal functions,” Limnol. Oceanogr. 41, 744–754 (1996).
[CrossRef]

Kahru, M.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

Kerr, P. F.

P. F. Kerr, Optical Mineralogy (McGraw-Hill, New York, 1977).

Kiefer, D. A.

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

D. Stramski, D. A. Kiefer, “Optical properties of marine bacteria,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 250–268 (1990).
[CrossRef]

Kirk, J. T. O.

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, Cambridge, England, 1994).
[CrossRef]

Kishino, M.

M. Kishino, M. Takahashi, N. Okami, S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Kondratyev, K. Ya.

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, D. V. Pozdnyakov, “Estimation of organic and inorganic matter in inland waters: optical cross sections of Lakes Ontario and Ladoga,” J. Great Lakes Res. 17, 461–469 (1991).
[CrossRef]

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, Fla., 1995).

Legendre, L.

D. Stramski, G. Rosenberg, L. Legendre, “Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface wave focusing,” Mar. Biol. 115, 363–372 (1993).
[CrossRef]

Li, W. K. W.

W. K. W. Li, “Composition of ultraphytoplankton in the central North Atlantic,” Mar. Ecol. Prog. Ser. 122, 1–8 (1995).
[CrossRef]

W. K. W. Li, P. M. Dickie, B. D. Irwin, A. M. Wood, “Biomass of bacteria, cyanobacteria, prochlorophytes, and photosynthetic eukaryotes in the Sargasso Sea,” Deep-Sea Res. 39, 501–519 (1992).
[CrossRef]

Loisel, H.

H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[CrossRef]

Loÿe-Pilot, M. D.

M. D. Loÿe-Pilot, J. M. Martin, J. Morelli, “Influence of Saharan dust on the rain acidity and atmospheric input to the Mediterranean,” Nature (London) 321, 427–428 (1986).
[CrossRef]

Maranger, R.

R. Maranger, D. F. Bird, “Viral abundance in aquatic systems: a comparison between marine and fresh waters,” Mar. Ecol. Prog. Ser. 121, 217–226 (1995).
[CrossRef]

Maritorena, S.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

Martin, J. M.

M. D. Loÿe-Pilot, J. M. Martin, J. Morelli, “Influence of Saharan dust on the rain acidity and atmospheric input to the Mediterranean,” Nature (London) 321, 427–428 (1986).
[CrossRef]

McClain, C.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

Melville, W. K.

E. J. Terrill, W. K. Melville, D. Stramski, “Bubble entrainment by breaking waves and their effects on the inherent optical properties of the upper ocean,” at Ocean Optics XIV Conference, Kailua-Kona, Haw, 10–13 November 1998, Ocean Optics XIV CD ROM (Office of Naval Research, Washington, D.C., 1998).

Mitchell, B. G.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

Mobley, C. D.

C. D. Mobley, D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550–560 (1997).
[CrossRef]

D. Stramski, C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538–549 (1997).
[CrossRef]

C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).

Morel, A.

H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentrations in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
[CrossRef]

A. Morel, Y.-H. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
[CrossRef]

Y.-H. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39, 1835–1855 (1992).
[CrossRef]

A. Morel, Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates. A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[CrossRef]

A. Bricaud, A.-L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10,749–10,768 (1988).
[CrossRef]

A. Bricaud, A. Morel, “Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling,” Appl. Opt. 25, 571–580 (1986).
[CrossRef] [PubMed]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

H. R. Gordon, A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery—a review,” in Lecture Notes on Coastal and Estuarine Studies, R. T. Barber, C. N. K. Mooers, M. J. Bowman, B. Zeitzschel, eds. (Springer-Verlag, New York, 1983).
[CrossRef]

Morelli, J.

M. D. Loÿe-Pilot, J. M. Martin, J. Morelli, “Influence of Saharan dust on the rain acidity and atmospheric input to the Mediterranean,” Nature (London) 321, 427–428 (1986).
[CrossRef]

Murtha, P. A.

E. A. Gallie, P. A. Murtha, “Specific absorption and backscattering spectra for suspended minerals and chlorophyll a in Chilko Lake, British Columbia,” Remote Sensing Environ. 39, 103–118 (1992).
[CrossRef]

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

Okami, N.

M. Kishino, M. Takahashi, N. Okami, S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Ortner, P. B.

K. L. Carder, R. G. Stewart, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

Partensky, F.

A. Morel, Y.-H. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
[CrossRef]

Perry, M. J.

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Piskozub, J.

J. Piskozub, D. Stramski, “The use of scattering error in absorption measurement for estimating the scattering phase function of marine phytoplankton,” Program and Abstracts, Ocean Optics XV Conference, Musée Océanographique, Monaco (2000), p. 90.

Pope, R. M.

Pozdnyakov, D. V.

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, D. V. Pozdnyakov, “Estimation of organic and inorganic matter in inland waters: optical cross sections of Lakes Ontario and Ladoga,” J. Great Lakes Res. 17, 461–469 (1991).
[CrossRef]

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, Fla., 1995).

Prieur, L.

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Proctor, L. M.

L. M. Proctor, J. A. Fuhrman, “Viral mortality of marine bacteria and cyanobacteria,” Nature (London) 342, 60–62 (1990).
[CrossRef]

Prospero, J. M.

K. L. Carder, R. G. Steward, P. R. Betzer, J. M. Prospero, “Dynamics and composition of particles from aeolian input event to the Sargasso Sea,” J. Geophys. Res. 91, 1055–1066 (1986).
[CrossRef]

Reynolds, R. A.

D. Stramski, A. Shalapyonok, R. A. Reynolds, “Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day–night cycle in natural irradiance,” J. Geophys. Res. 100, 13,295–13,307 (1995).
[CrossRef]

D. Stramski, R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38, 1347–1364 (1993).
[CrossRef]

Roesler, C. S.

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

Rosenberg, G.

D. Stramski, G. Rosenberg, L. Legendre, “Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface wave focusing,” Mar. Biol. 115, 363–372 (1993).
[CrossRef]

Shalapyonok, A.

D. Stramski, A. Shalapyonok, R. A. Reynolds, “Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day–night cycle in natural irradiance,” J. Geophys. Res. 100, 13,295–13,307 (1995).
[CrossRef]

Sieburth, J. M.

P. G. Davis, D. A. Caron, P. W. Johnson, J. M. Sieburth, “Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: geographic, vertical, seasonal, and diel distributions,” Mar. Ecol. Prog. Ser. 21, 15–26 (1985).
[CrossRef]

Siegel, D. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

R. Iturriaga, D. A. Siegel, “Microspectrophotometric characterization of phytoplankton and detrital absorption properties in the Sargasso Sea,” Limnol. Oceanogr. 34, 1706–1726 (1989).
[CrossRef]

Smith, R. C.

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

R. C. Smith, K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr. 23, 260–267 (1978).
[CrossRef]

Sokolik, I. N.

I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423–9444 (1999).
[CrossRef]

Steward, R. G.

K. L. Carder, R. G. Steward, P. R. Betzer, J. M. Prospero, “Dynamics and composition of particles from aeolian input event to the Sargasso Sea,” J. Geophys. Res. 91, 1055–1066 (1986).
[CrossRef]

Stewart, R. G.

K. L. Carder, R. G. Stewart, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

Stramski, D.

C. D. Mobley, D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550–560 (1997).
[CrossRef]

D. Stramski, C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538–549 (1997).
[CrossRef]

D. Stramski, A. Shalapyonok, R. A. Reynolds, “Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day–night cycle in natural irradiance,” J. Geophys. Res. 100, 13,295–13,307 (1995).
[CrossRef]

D. Stramski, G. Rosenberg, L. Legendre, “Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface wave focusing,” Mar. Biol. 115, 363–372 (1993).
[CrossRef]

D. Stramski, R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38, 1347–1364 (1993).
[CrossRef]

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

A. Bricaud, D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
[CrossRef]

D. Stramski, D. A. Kiefer, “Optical properties of marine bacteria,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 250–268 (1990).
[CrossRef]

E. J. Terrill, W. K. Melville, D. Stramski, “Bubble entrainment by breaking waves and their effects on the inherent optical properties of the upper ocean,” at Ocean Optics XIV Conference, Kailua-Kona, Haw, 10–13 November 1998, Ocean Optics XIV CD ROM (Office of Naval Research, Washington, D.C., 1998).

J. Piskozub, D. Stramski, “The use of scattering error in absorption measurement for estimating the scattering phase function of marine phytoplankton,” Program and Abstracts, Ocean Optics XV Conference, Musée Océanographique, Monaco (2000), p. 90.

Takahashi, M.

M. Kishino, M. Takahashi, N. Okami, S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

M. Takahashi, P. K. Bienfang, “Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters,” Mar. Biol. 76, 203–211 (1983).
[CrossRef]

Terrill, E. J.

E. J. Terrill, W. K. Melville, D. Stramski, “Bubble entrainment by breaking waves and their effects on the inherent optical properties of the upper ocean,” at Ocean Optics XIV Conference, Kailua-Kona, Haw, 10–13 November 1998, Ocean Optics XIV CD ROM (Office of Naval Research, Washington, D.C., 1998).

Toon, O. B.

I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423–9444 (1999).
[CrossRef]

Vagle, S.

S. Vagle, D. M. Farmer, “The measurement of bubble-size distributions by acoustical backscatter,” J. Atmos. Ocean. Technol. 9, 630–644 (1992).
[CrossRef]

Vaillancourt, R. D.

R. D. Vaillancourt, C. Brown, R. R. L. Guillard, “A taxonomic survey of the optical properties of marine phytoplankton with special emphasis on the backscattering coefficient,” Earth Observing Syst. Trans. Am. Geophys. Union 80(49), 119–120 (2000).

Vaulot, D.

A. Morel, Y.-H. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
[CrossRef]

Wood, A. M.

W. K. W. Li, P. M. Dickie, B. D. Irwin, A. M. Wood, “Biomass of bacteria, cyanobacteria, prochlorophytes, and photosynthetic eukaryotes in the Sargasso Sea,” Deep-Sea Res. 39, 501–519 (1992).
[CrossRef]

Zwick, H. H.

Appl. Opt. (4)

Bull. Mar. Sci. (1)

M. Kishino, M. Takahashi, N. Okami, S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Deep-Sea Res. (2)

Y.-H. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39, 1835–1855 (1992).
[CrossRef]

W. K. W. Li, P. M. Dickie, B. D. Irwin, A. M. Wood, “Biomass of bacteria, cyanobacteria, prochlorophytes, and photosynthetic eukaryotes in the Sargasso Sea,” Deep-Sea Res. 39, 501–519 (1992).
[CrossRef]

Earth Observing Syst. Trans. Am. Geophys. Union (1)

R. D. Vaillancourt, C. Brown, R. R. L. Guillard, “A taxonomic survey of the optical properties of marine phytoplankton with special emphasis on the backscattering coefficient,” Earth Observing Syst. Trans. Am. Geophys. Union 80(49), 119–120 (2000).

J. Atmos. Ocean. Technol. (1)

S. Vagle, D. M. Farmer, “The measurement of bubble-size distributions by acoustical backscatter,” J. Atmos. Ocean. Technol. 9, 630–644 (1992).
[CrossRef]

J. Geophys. Res. (6)

K. L. Carder, R. G. Steward, P. R. Betzer, J. M. Prospero, “Dynamics and composition of particles from aeolian input event to the Sargasso Sea,” J. Geophys. Res. 91, 1055–1066 (1986).
[CrossRef]

D. Stramski, A. Shalapyonok, R. A. Reynolds, “Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day–night cycle in natural irradiance,” J. Geophys. Res. 100, 13,295–13,307 (1995).
[CrossRef]

I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423–9444 (1999).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10,749–10,768 (1988).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentrations in oceanic (Case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31,033–31,044 (1998).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24,937–24,953 (1998).
[CrossRef]

J. Great Lakes Res. (1)

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, D. V. Pozdnyakov, “Estimation of organic and inorganic matter in inland waters: optical cross sections of Lakes Ontario and Ladoga,” J. Great Lakes Res. 17, 461–469 (1991).
[CrossRef]

J. Mar. Res. (2)

A. Morel, Y.-H. Ahn, F. Partensky, D. Vaulot, H. Claustre, “Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation,” J. Mar. Res. 51, 617–649 (1993).
[CrossRef]

A. Morel, Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates. A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[CrossRef]

J. Plankton Res. (1)

A. Bricaud, A.-L. Bedhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plankton Res. 10, 851–873 (1988).
[CrossRef]

Limnol. Oceanogr. (12)

C. S. Roesler, M. J. Perry, K. L. Carder, “Modeling in situ phytoplankton absorption from total absorption spectra in productive inland waters,” Limnol. Oceanogr. 34, 1510–1523 (1989).
[CrossRef]

A. Bricaud, D. Stramski, “Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and Sargasso Sea,” Limnol. Oceanogr. 35, 562–582 (1990).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

K. L. Carder, R. G. Stewart, G. R. Harvey, P. B. Ortner, “Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll,” Limnol. Oceanogr. 34, 68–81 (1989).
[CrossRef]

H. Loisel, A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[CrossRef]

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical classification of natural waters,” Limnol. Oceanogr. 23, 260–267 (1978).
[CrossRef]

D. Stramski, R. A. Reynolds, “Diel variations in the optical properties of a marine diatom,” Limnol. Oceanogr. 38, 1347–1364 (1993).
[CrossRef]

C. D. Mobley, D. Stramski, “Effects of microbial particles on oceanic optics: methodology for radiative transfer modeling and example simulations,” Limnol. Oceanogr. 42, 550–560 (1997).
[CrossRef]

R. Iturriaga, D. A. Siegel, “Microspectrophotometric characterization of phytoplankton and detrital absorption properties in the Sargasso Sea,” Limnol. Oceanogr. 34, 1706–1726 (1989).
[CrossRef]

D. Stramski, C. D. Mobley, “Effects of microbial particles on oceanic optics: a database of single-particle optical properties,” Limnol. Oceanogr. 42, 538–549 (1997).
[CrossRef]

M. Jonasz, G. Fournier, “Approximation of the size distribution of marine particles by a sum of lognormal functions,” Limnol. Oceanogr. 41, 744–754 (1996).
[CrossRef]

Mar. Biol. (2)

M. Takahashi, P. K. Bienfang, “Size structure of phytoplankton biomass and photosynthesis in subtropical Hawaiian waters,” Mar. Biol. 76, 203–211 (1983).
[CrossRef]

D. Stramski, G. Rosenberg, L. Legendre, “Photosynthetic and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface wave focusing,” Mar. Biol. 115, 363–372 (1993).
[CrossRef]

Mar. Ecol. Prog. Ser. (4)

P. G. Davis, D. A. Caron, P. W. Johnson, J. M. Sieburth, “Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: geographic, vertical, seasonal, and diel distributions,” Mar. Ecol. Prog. Ser. 21, 15–26 (1985).
[CrossRef]

B. C. Cho, F. Azam, “Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone,” Mar. Ecol. Prog. Ser. 63, 253–259 (1990).
[CrossRef]

W. K. W. Li, “Composition of ultraphytoplankton in the central North Atlantic,” Mar. Ecol. Prog. Ser. 122, 1–8 (1995).
[CrossRef]

R. Maranger, D. F. Bird, “Viral abundance in aquatic systems: a comparison between marine and fresh waters,” Mar. Ecol. Prog. Ser. 121, 217–226 (1995).
[CrossRef]

Nature (London) (2)

L. M. Proctor, J. A. Fuhrman, “Viral mortality of marine bacteria and cyanobacteria,” Nature (London) 342, 60–62 (1990).
[CrossRef]

M. D. Loÿe-Pilot, J. M. Martin, J. Morelli, “Influence of Saharan dust on the rain acidity and atmospheric input to the Mediterranean,” Nature (London) 321, 427–428 (1986).
[CrossRef]

Prog. Oceanogr. (1)

D. Stramski, D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

Remote Sensing Environ. (1)

E. A. Gallie, P. A. Murtha, “Specific absorption and backscattering spectra for suspended minerals and chlorophyll a in Chilko Lake, British Columbia,” Remote Sensing Environ. 39, 103–118 (1992).
[CrossRef]

Other (13)

E. J. Terrill, W. K. Melville, D. Stramski, “Bubble entrainment by breaking waves and their effects on the inherent optical properties of the upper ocean,” at Ocean Optics XIV Conference, Kailua-Kona, Haw, 10–13 November 1998, Ocean Optics XIV CD ROM (Office of Naval Research, Washington, D.C., 1998).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials. Applications to Geology, Astronomy, Chemistry, and Engineering (Academic, New York, 1979).

K. L. Carder, P. R. Betzer, D. W. Eggimann, “Physical, chemical, and optical measures of suspended-particle concentrations: their intercomparison and application to the West African Shelf,” in Suspended Solids in Water, R. J. Gibbs, ed. (Plenum, New York, 1974), pp. 173–193.
[CrossRef]

P. F. Kerr, Optical Mineralogy (McGraw-Hill, New York, 1977).

H. R. Gordon, A. Morel, “Remote assessment of ocean color for interpretation of satellite visible imagery—a review,” in Lecture Notes on Coastal and Estuarine Studies, R. T. Barber, C. N. K. Mooers, M. J. Bowman, B. Zeitzschel, eds. (Springer-Verlag, New York, 1983).
[CrossRef]

N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1975).

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, Cambridge, England, 1994).
[CrossRef]

C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).

R. P. Bukata, J. H. Jerome, K. Ya. Kondratyev, D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, Boca Raton, Fla., 1995).

D. Stramski, D. A. Kiefer, “Optical properties of marine bacteria,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 250–268 (1990).
[CrossRef]

J. Piskozub, D. Stramski, “The use of scattering error in absorption measurement for estimating the scattering phase function of marine phytoplankton,” Program and Abstracts, Ocean Optics XV Conference, Musée Océanographique, Monaco (2000), p. 90.

H. R. Gordon, “Mie theory of light scattering by ocean particulates,” in Suspended Solids in Water, R. J. Gibbs, ed. (Plenum, New York, 1974), pp. 73–86.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

(Left) Absorption cross sections of the 17 planktonic components VIRU are not included in this graph because their absorption cross sections are assumed to be zero. The lowest curve corresponds to HBAC and the highest curve to MICA. (Right) Each absorption curve is normalized at 400 nm to facilitate comparison of the spectral shapes.

Fig. 2
Fig. 2

(Left) Scattering cross sections of the 18 planktonic components. The lowest curve corresponds to VIRU and the highest curve to MICA. (Right) Each scattering curve is normalized at 400 nm to facilitate comparison of the spectral shape.

Fig. 3
Fig. 3

(Left) Backscattering cross sections of the 18 planktonic components. The lowest curve corresponds to VIRU and the highest curve to MICA. (Right) Each backscattering curve is normalized at 400 nm to facilitate comparison of the spectral shape.

Fig. 4
Fig. 4

(Left) Backscattering ratio (i.e., the ratio of backscattering to total scattering) of the 18 planktonic components. The lowest curve corresponds to CURV and the highest curve to VIRU. (Right) Each curve is normalized at 400 nm to facilitate comparison of the spectral shape.

Fig. 5
Fig. 5

Scattering phase functions at 550 nm of the 18 planktonic components. (Left) Log–log plot to facilitate comparison of forward-angle scattering. (Right) Semilog plot to facilitate comparison of large-angle scattering including backscattering at angles >90°. The curve that shows a weak dependence on the scattering angle corresponds to VIRU.

Fig. 6
Fig. 6

Scattering phase functions at three different wavelengths, 400, 550, and 700 nm, for two planktonic species: (left) SYN and (right) ELON. The average cell size for these species is indicated.

Fig. 7
Fig. 7

(Left) Absorption σ a and scattering σ b cross sections for generic assemblages of organic detrital particles (dotted lines) and mineral particles (solid lines). (Right) Backscattering cross sections of these two components.

Fig. 8
Fig. 8

Comparison of scattering phase functions (at 550 nm) of detrital particles, mineral particles, air bubbles, and the average Petzold particle phase function. The Petzold phase function is taken from Mobley (Table 3.10, p. 111).10

Fig. 9
Fig. 9

(Top) Density functions of the particle-size distribution for the 18 planktonic components at the base concentrations shown in Table 3. The 11 distributions for small nanoplankton species are indicated by arrows. (Bottom) Composite size distribution of all planktonic components, as derived from individual distributions (top) compared with the size distributions of detrital particles, mineral particles, and air bubbles at the concentrations shown in Table 3.

Fig. 10
Fig. 10

(Top) Total absorption coefficient by suspended particulate matter and the contributions associated with all planktonic components, detritus, and mineral particles as obtained from the base simulation of the IOP model. (Bottom) Absorption coefficient of plankton further partitioned into the contributions associated with the various planktonic components. The single most important planktonic component is PROC, and the most dominant planktonic group is picoplankton.

Fig. 11
Fig. 11

(Top) Total scattering coefficient by suspended hydrosols and the contributions associated with all planktonic components, detritus, mineral particles, and air bubbles as obtained from the base simulation of the IOP model. (Bottom) Scattering coefficient of plankton further partitioned into the contributions associated with the various planktonic components. The single most important planktonic component is HBAC, and the most dominant planktonic group is picoplankton.

Fig. 12
Fig. 12

(Top) Total backscattering coefficient by suspended hydrosols and the contributions associated with all planktonic components, detritus, mineral particles, and air bubbles as obtained from the base simulation of the IOP model. (Bottom) Backscattering coefficient of plankton further partitioned into the contributions associated with the various planktonic components. The single most dominant planktonic component is HBAC, and the most dominant planktonic group is picoplankton. The contribution by VIRU is also highlighted.

Fig. 13
Fig. 13

Range of concentrations for each of the 11 small nanoplankton species from PING through CURV, which represents 22 different sets of nanoplankton composition. The concentrations are shown in terms of their percent contribution to the total nanoplankton concentration, which is 2.5 × 108 particles m-3 in the base simulation of the IOP model. The points correspond to the particular set of base concentrations shown in Table 3.

Fig. 14
Fig. 14

(Top) Variations in the absorption and (bottom) scattering coefficients of the 11 small nanoplankton species together (i.e., 11 species from PING through CUR) caused by changes in the species composition. Twenty-two absorption and scattering curves are shown that correspond to the 22 different sets of species concentrations. The total concentration of the 11 species combined is the same for each of these 22 sets, that is, 2.5 × 108 particles m-3.

Fig. 15
Fig. 15

Examples of particle-size distributions for two bloom simulations of the IOP model, the bloom of SYNE, and the bloom of ELON. The features associated with the bloom-forming species are seen in the size distributions of plankton.

Fig. 16
Fig. 16

(Top) Spectra of the total particulate absorption coefficient and (bottom) total particulate scattering coefficient obtained from the bloom simulations of the IOP model. Labels 1–7 correspond to various blooms as indicated. For comparison, the spectra from the base simulation of the oligotrophic water are also shown. (The lowest curve in each figure is shown as a thick solid curve).

Tables (4)

Tables Icon

Table 1 Summary of Planktonic Componentsa

Tables Icon

Table 2 Spectral Absorption σ a , Scattering σ b , and Backscattering σ bb Cross Sections for the Generic Components of Detrital Particles, Mineral Particles, and Air Bubblesa

Tables Icon

Table 3 Particle Number and Chlorophyll a Concentrations of Various Particulate Components Used in the Base Simulation of the IOP Modela

Tables Icon

Table 4 Cell and Chlorophyll-a Concentrations of Bloom-Forming Phytoplankton Species Used in the Model Simulations of Bloomsa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

a(λ)=aw(λ)+i=118apla,i(λ+adet(λ)+amin(λ)+aCDOM(λ)=aw(λ)+i=118 Npla,iσa,pla,i(λ)+Ndetσa,det(λ)+Nminσa,min(λ)+aCDOM(λ),
bλ=bwλ+i=118 bpla,iλ+bdetλ+bminλ+bbubλ=bwλ+i=118 Npla,iσb,pla,iλ+Ndetσb,detλ+Nminσb,minλ+Nbubσb,bubλ,
βψ, λ=βwψ, λ+i=118 βpla,iψ, λ+βdetψ, λ+βminψ, λ+βbubψ, λ=bλβ˜ψ, λ=bwλβ˜wψ, λ+i=118 bpla,iλβ˜pla,iψ, λ+bdetλβ˜detψ, λ+bminλβ˜minψ, λ+bbubλβ˜bubψ, λ.
βpla,iψ, λ=bpla,iλβ˜pla,iψ, λ,

Metrics