Abstract

We have developed improved analyzer multilayers for the detection of aluminium (Al) and boron (B) on silicon (Si) wafers with wavelength-dispersive x-ray fluorescence spectrometers. For the detection of Al on Si wafers we show that WSi2/Si and Ta/Si multilayers provide detection limits that are 42% and 60% better, respectively, than with currently used W/Si multilayers. For the detection of B on Si wafers we show that La/B4C multilayers improve the detection limit by ∼28% compared with a conventionally used Mo/B4C multilayer.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Jenkins, X-Ray Fluorescence Spectrometry, Vol. 152 of Chemical Analysis Series (Wiley, New York, 1999), pp. 101–107.
  2. D. Chattarji, The Theory of Auger Transitions (Academic, London, 1976), pp. 60–61.
  3. J. H. Underwood, T. W. Barbee, “Layered synthetic microstructures as Bragg diffractors for x-rays and extreme ultraviolet: theory and predicted performance,” Appl. Opt. 20, 3027–3034 (1981).
    [CrossRef] [PubMed]
  4. R. W. James, Optical Principles of the Diffraction of X-Rays, Vol. II of the Crystalline State Series (University Press, Glasgow, 1954), p. 62.
  5. E. Spiller, Soft-X-Ray Optics (SPIE Optical Engineering Press, Bellingham, Wash., 1994), pp. 145–149.
  6. H. Zabel, “X-ray and neutron reflectivity analysis of thin films and superlattices,” Appl. Phys. A 58, 159–168 (1994).
    [CrossRef]
  7. M. Schuster, L. Mueller, K. E. Mauser, R. Straub, “Quantitative x-ray fluorescence analysis of boron in thin films of borophosphosilicate glasses,” Thin Solid Films 157, 325–336 (1988).
    [CrossRef]
  8. R. Jenkins, An Introduction to X-Ray Spectrometry (Heyden, London, 1974), pp. 109–114.
  9. E. P. Bertin, Principles and Practice of X-Ray Spectrometric Analysis (Plenum, New York, 1975), pp. 532–535.
  10. These data are available at http://www-cxro.lbl.gov/optical_constants/ .
  11. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
    [CrossRef]
  12. R. A. Levy, K. Nassau, “Viscous behavior of phosphosilicate and borophosphosilicate glasses in VLSI processing,” Solid State Technol. 29, 123–130 (1986).
  13. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection. E = 100–2000 eV, Z = 1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
    [CrossRef]
  14. J. L. Wood, K. L. Hart, “Reflectivity and resolution x-ray dispersive and reflective structures for carbon, beryllium and boron analysis,” U.S. patent4,785,470 (15November1988).
  15. M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, H. Mai, “Laterally graded multilayer optics for x-ray analysis,” in EUV, X-Ray, and Neutron Optics and Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldonado, H. H. Chen-Mayer, S. P. Vernon, eds., Proc. SPIE3767, 183–198 (1999).
    [CrossRef]
  16. H.-G. Birken, C. Blessing, C. Kunz, R. Wolf, “Investigations on the consistency of optical constants in the XUV determined by different methods,” Rev. Sci. Instrum. 60, 2223–2226 (1989).
    [CrossRef]
  17. L. G. Parrat, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359–369 (1954).
    [CrossRef]
  18. L. Névot, P. Croce, “Caractérisation des surfaces par réflexion rasante de rayons X. Application à l’étude du polissage de quelques verres silicates,” Rev. Phys. Appl. 15, 761–779 (1980).
    [CrossRef]

1994 (1)

H. Zabel, “X-ray and neutron reflectivity analysis of thin films and superlattices,” Appl. Phys. A 58, 159–168 (1994).
[CrossRef]

1993 (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

1989 (1)

H.-G. Birken, C. Blessing, C. Kunz, R. Wolf, “Investigations on the consistency of optical constants in the XUV determined by different methods,” Rev. Sci. Instrum. 60, 2223–2226 (1989).
[CrossRef]

1988 (1)

M. Schuster, L. Mueller, K. E. Mauser, R. Straub, “Quantitative x-ray fluorescence analysis of boron in thin films of borophosphosilicate glasses,” Thin Solid Films 157, 325–336 (1988).
[CrossRef]

1986 (1)

R. A. Levy, K. Nassau, “Viscous behavior of phosphosilicate and borophosphosilicate glasses in VLSI processing,” Solid State Technol. 29, 123–130 (1986).

1982 (1)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection. E = 100–2000 eV, Z = 1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

1981 (1)

1980 (1)

L. Névot, P. Croce, “Caractérisation des surfaces par réflexion rasante de rayons X. Application à l’étude du polissage de quelques verres silicates,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

1954 (1)

L. G. Parrat, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359–369 (1954).
[CrossRef]

Bahr, D.

M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, H. Mai, “Laterally graded multilayer optics for x-ray analysis,” in EUV, X-Ray, and Neutron Optics and Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldonado, H. H. Chen-Mayer, S. P. Vernon, eds., Proc. SPIE3767, 183–198 (1999).
[CrossRef]

Barbee, T. W.

Bertin, E. P.

E. P. Bertin, Principles and Practice of X-Ray Spectrometric Analysis (Plenum, New York, 1975), pp. 532–535.

Birken, H.-G.

H.-G. Birken, C. Blessing, C. Kunz, R. Wolf, “Investigations on the consistency of optical constants in the XUV determined by different methods,” Rev. Sci. Instrum. 60, 2223–2226 (1989).
[CrossRef]

Blessing, C.

H.-G. Birken, C. Blessing, C. Kunz, R. Wolf, “Investigations on the consistency of optical constants in the XUV determined by different methods,” Rev. Sci. Instrum. 60, 2223–2226 (1989).
[CrossRef]

Brügemann, L.

M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, H. Mai, “Laterally graded multilayer optics for x-ray analysis,” in EUV, X-Ray, and Neutron Optics and Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldonado, H. H. Chen-Mayer, S. P. Vernon, eds., Proc. SPIE3767, 183–198 (1999).
[CrossRef]

Burgäzy, F.

M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, H. Mai, “Laterally graded multilayer optics for x-ray analysis,” in EUV, X-Ray, and Neutron Optics and Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldonado, H. H. Chen-Mayer, S. P. Vernon, eds., Proc. SPIE3767, 183–198 (1999).
[CrossRef]

Chattarji, D.

D. Chattarji, The Theory of Auger Transitions (Academic, London, 1976), pp. 60–61.

Croce, P.

L. Névot, P. Croce, “Caractérisation des surfaces par réflexion rasante de rayons X. Application à l’étude du polissage de quelques verres silicates,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

Davis, J. C.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Dietsch, R.

M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, H. Mai, “Laterally graded multilayer optics for x-ray analysis,” in EUV, X-Ray, and Neutron Optics and Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldonado, H. H. Chen-Mayer, S. P. Vernon, eds., Proc. SPIE3767, 183–198 (1999).
[CrossRef]

Fujikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection. E = 100–2000 eV, Z = 1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Göbel, H.

M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, H. Mai, “Laterally graded multilayer optics for x-ray analysis,” in EUV, X-Ray, and Neutron Optics and Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldonado, H. H. Chen-Mayer, S. P. Vernon, eds., Proc. SPIE3767, 183–198 (1999).
[CrossRef]

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Hart, K. L.

J. L. Wood, K. L. Hart, “Reflectivity and resolution x-ray dispersive and reflective structures for carbon, beryllium and boron analysis,” U.S. patent4,785,470 (15November1988).

Henke, B. L.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection. E = 100–2000 eV, Z = 1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Holz, T.

M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, H. Mai, “Laterally graded multilayer optics for x-ray analysis,” in EUV, X-Ray, and Neutron Optics and Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldonado, H. H. Chen-Mayer, S. P. Vernon, eds., Proc. SPIE3767, 183–198 (1999).
[CrossRef]

James, R. W.

R. W. James, Optical Principles of the Diffraction of X-Rays, Vol. II of the Crystalline State Series (University Press, Glasgow, 1954), p. 62.

Jenkins, R.

R. Jenkins, X-Ray Fluorescence Spectrometry, Vol. 152 of Chemical Analysis Series (Wiley, New York, 1999), pp. 101–107.

R. Jenkins, An Introduction to X-Ray Spectrometry (Heyden, London, 1974), pp. 109–114.

Kunz, C.

H.-G. Birken, C. Blessing, C. Kunz, R. Wolf, “Investigations on the consistency of optical constants in the XUV determined by different methods,” Rev. Sci. Instrum. 60, 2223–2226 (1989).
[CrossRef]

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection. E = 100–2000 eV, Z = 1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Levy, R. A.

R. A. Levy, K. Nassau, “Viscous behavior of phosphosilicate and borophosphosilicate glasses in VLSI processing,” Solid State Technol. 29, 123–130 (1986).

Mai, H.

M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, H. Mai, “Laterally graded multilayer optics for x-ray analysis,” in EUV, X-Ray, and Neutron Optics and Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldonado, H. H. Chen-Mayer, S. P. Vernon, eds., Proc. SPIE3767, 183–198 (1999).
[CrossRef]

Mauser, K. E.

M. Schuster, L. Mueller, K. E. Mauser, R. Straub, “Quantitative x-ray fluorescence analysis of boron in thin films of borophosphosilicate glasses,” Thin Solid Films 157, 325–336 (1988).
[CrossRef]

Michaelsen, C.

M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, H. Mai, “Laterally graded multilayer optics for x-ray analysis,” in EUV, X-Ray, and Neutron Optics and Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldonado, H. H. Chen-Mayer, S. P. Vernon, eds., Proc. SPIE3767, 183–198 (1999).
[CrossRef]

Mueller, L.

M. Schuster, L. Mueller, K. E. Mauser, R. Straub, “Quantitative x-ray fluorescence analysis of boron in thin films of borophosphosilicate glasses,” Thin Solid Films 157, 325–336 (1988).
[CrossRef]

Nassau, K.

R. A. Levy, K. Nassau, “Viscous behavior of phosphosilicate and borophosphosilicate glasses in VLSI processing,” Solid State Technol. 29, 123–130 (1986).

Névot, L.

L. Névot, P. Croce, “Caractérisation des surfaces par réflexion rasante de rayons X. Application à l’étude du polissage de quelques verres silicates,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

Parrat, L. G.

L. G. Parrat, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359–369 (1954).
[CrossRef]

Ricardo, P.

M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, H. Mai, “Laterally graded multilayer optics for x-ray analysis,” in EUV, X-Ray, and Neutron Optics and Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldonado, H. H. Chen-Mayer, S. P. Vernon, eds., Proc. SPIE3767, 183–198 (1999).
[CrossRef]

Schuster, M.

M. Schuster, L. Mueller, K. E. Mauser, R. Straub, “Quantitative x-ray fluorescence analysis of boron in thin films of borophosphosilicate glasses,” Thin Solid Films 157, 325–336 (1988).
[CrossRef]

M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, H. Mai, “Laterally graded multilayer optics for x-ray analysis,” in EUV, X-Ray, and Neutron Optics and Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldonado, H. H. Chen-Mayer, S. P. Vernon, eds., Proc. SPIE3767, 183–198 (1999).
[CrossRef]

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection. E = 100–2000 eV, Z = 1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Spiller, E.

E. Spiller, Soft-X-Ray Optics (SPIE Optical Engineering Press, Bellingham, Wash., 1994), pp. 145–149.

Störmer, M.

M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, H. Mai, “Laterally graded multilayer optics for x-ray analysis,” in EUV, X-Ray, and Neutron Optics and Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldonado, H. H. Chen-Mayer, S. P. Vernon, eds., Proc. SPIE3767, 183–198 (1999).
[CrossRef]

Straub, R.

M. Schuster, L. Mueller, K. E. Mauser, R. Straub, “Quantitative x-ray fluorescence analysis of boron in thin films of borophosphosilicate glasses,” Thin Solid Films 157, 325–336 (1988).
[CrossRef]

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection. E = 100–2000 eV, Z = 1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Underwood, J. H.

Wolf, R.

H.-G. Birken, C. Blessing, C. Kunz, R. Wolf, “Investigations on the consistency of optical constants in the XUV determined by different methods,” Rev. Sci. Instrum. 60, 2223–2226 (1989).
[CrossRef]

Wood, J. L.

J. L. Wood, K. L. Hart, “Reflectivity and resolution x-ray dispersive and reflective structures for carbon, beryllium and boron analysis,” U.S. patent4,785,470 (15November1988).

Zabel, H.

H. Zabel, “X-ray and neutron reflectivity analysis of thin films and superlattices,” Appl. Phys. A 58, 159–168 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

H. Zabel, “X-ray and neutron reflectivity analysis of thin films and superlattices,” Appl. Phys. A 58, 159–168 (1994).
[CrossRef]

At. Data Nucl. Data Tables (2)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection. E = 100–2000 eV, Z = 1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[CrossRef]

Phys. Rev. (1)

L. G. Parrat, “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359–369 (1954).
[CrossRef]

Rev. Phys. Appl. (1)

L. Névot, P. Croce, “Caractérisation des surfaces par réflexion rasante de rayons X. Application à l’étude du polissage de quelques verres silicates,” Rev. Phys. Appl. 15, 761–779 (1980).
[CrossRef]

Rev. Sci. Instrum. (1)

H.-G. Birken, C. Blessing, C. Kunz, R. Wolf, “Investigations on the consistency of optical constants in the XUV determined by different methods,” Rev. Sci. Instrum. 60, 2223–2226 (1989).
[CrossRef]

Solid State Technol. (1)

R. A. Levy, K. Nassau, “Viscous behavior of phosphosilicate and borophosphosilicate glasses in VLSI processing,” Solid State Technol. 29, 123–130 (1986).

Thin Solid Films (1)

M. Schuster, L. Mueller, K. E. Mauser, R. Straub, “Quantitative x-ray fluorescence analysis of boron in thin films of borophosphosilicate glasses,” Thin Solid Films 157, 325–336 (1988).
[CrossRef]

Other (9)

R. Jenkins, An Introduction to X-Ray Spectrometry (Heyden, London, 1974), pp. 109–114.

E. P. Bertin, Principles and Practice of X-Ray Spectrometric Analysis (Plenum, New York, 1975), pp. 532–535.

These data are available at http://www-cxro.lbl.gov/optical_constants/ .

R. W. James, Optical Principles of the Diffraction of X-Rays, Vol. II of the Crystalline State Series (University Press, Glasgow, 1954), p. 62.

E. Spiller, Soft-X-Ray Optics (SPIE Optical Engineering Press, Bellingham, Wash., 1994), pp. 145–149.

R. Jenkins, X-Ray Fluorescence Spectrometry, Vol. 152 of Chemical Analysis Series (Wiley, New York, 1999), pp. 101–107.

D. Chattarji, The Theory of Auger Transitions (Academic, London, 1976), pp. 60–61.

J. L. Wood, K. L. Hart, “Reflectivity and resolution x-ray dispersive and reflective structures for carbon, beryllium and boron analysis,” U.S. patent4,785,470 (15November1988).

M. Schuster, H. Göbel, L. Brügemann, D. Bahr, F. Burgäzy, C. Michaelsen, M. Störmer, P. Ricardo, R. Dietsch, T. Holz, H. Mai, “Laterally graded multilayer optics for x-ray analysis,” in EUV, X-Ray, and Neutron Optics and Sources, C. A. MacDonald, K. A. Goldberg, J. R. Maldonado, H. H. Chen-Mayer, S. P. Vernon, eds., Proc. SPIE3767, 183–198 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Absorption factors β and dispersion coefficients δ for Ta, W, and Si as a function of the energy.

Fig. 2
Fig. 2

Calculated reflectivities of WSi2/Si, Ta/Si, and W/Si ideal and semi-infinite multilayers with d = 3.80 nm and Γ = 0.40 at the respective angle where the reflectivity for Al Kα (1487 eV) reaches its maximum (angles listed in the legend).

Fig. 3
Fig. 3

X-ray optical constants of La, Mo, and B4C as a function of the energy.

Fig. 4
Fig. 4

Simulated reflectivities for ideal and semi-infinite multilayers La/B4C and Mo/B4C with d = 8.50 nm and Γ = 0.40 at the respective angle where the reflectivity for B Kα (183 eV) reaches its maximum (angles listed in the legend).

Fig. 5
Fig. 5

Reflectivity scans of WSi2/Si, Ta/Si, and W/Si multilayers obtained with Cu Kα (8048 eV). The experimental measurements are represented by points and the simulated curves by solid curves.

Fig. 6
Fig. 6

Spectrometer measurements of a Si wafer coated with 12-nm Al (7 × 1016 atoms/cm2) with WSi2/Si, Ta/Si, and W/Si multilayers as analyzer crystals in a SRS 300. We used a mask of 30 mm without a filter and a 0.15° collimator. The x-ray tube settings were 20 kV and 5 mA. The total measuring time (step width, 0.001°) was ∼4000 s.

Fig. 7
Fig. 7

Reflectivity scans of La/B4C and Mo/B4C multilayers obtained with Cu Kα (8048 eV). Experimental measurements, points; simulated curves, solid curves.

Fig. 8
Fig. 8

Experimental reflectivities of La/B4C and Mo/B4C measured with synchrotron radiation between 50 and 250 eV at an angle of 24.5° where the reflectivity for B Kα (183 eV) reaches its maximum.

Fig. 9
Fig. 9

Fluorescence spectra of B4C with La/B4C and Mo/B4C multilayers as analyzer crystals in a S4 spectrometer. We used a mask of 34 mm without a filter and a 1.0° collimator. The x-ray tube settings were 20 kV and 50 mA.

Fig. 10
Fig. 10

Fluorescence spectra of BPSG with La/B4C and Mo/B4C multilayers as analyzer crystals. The experimental details were identical to those in Fig. 9.

Tables (7)

Tables Icon

Table 1 Calculated Reflectivities R Al and R Si for Unpolarized Radiation of Al Kα (1487 eV) and Si Kα (1740 eV), at the Respective Angle Where the Reflectivity for Al Kα Reaches Its Maximuma

Tables Icon

Table 2 Theoretically Predicted Values for the Reflectivity of Unpolarized Radiation of B Kα (183 eV), Si L (90 eV), P L (122 eV), C Kα (277 eV), and O Kα (525 eV) at the Respective Angle Where the Reflectivity for B Kα Reaches Its Maximuma

Tables Icon

Table 3 Parameters Characterizing the Multilayers Produced for the Detection of Al on Si Wafers

Tables Icon

Table 4 Experimental Peak Intensities (P), Backgrounds, (B) and B/(P - B) Obtained with WSi2/Si, Ta/Si, and W/Si Mirrors, with a Si Wafer Coated with 12-nm Al as the Sample

Tables Icon

Table 5 Parameters Characterizing the Multilayers Fabricated for the Detection of B

Tables Icon

Table 6 Theoretically Predicted (for Ideal, Semi-Infinite Multilayers) and Experimentally Verified Values for the Reflectivity of s-Polarized Radiation of B Kα (183 eV), Si L (90 eV), and P L (122 eV)a

Tables Icon

Table 7 Experimental Peak Intensities (P), Backgrounds (B), and B/(P - B) of La/B4C and Mo/B4C for the Detection of B in Two Different Samples: B4C and BPSG

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ñ=1-δ-iβ,
δ=r0λ22πNf0+f1,
β=r0λ22πNf2.
LLD=22P-B cBt.

Metrics