Abstract

High-performance polymer microlens arrays were fabricated by means of withdrawing substrates of patterned wettability from a monomer solution. The f-number (f #) of formed microlenses was controlled by adjustment of monomer viscosity and surface tension, substrate dipping angle and withdrawal speed, the array fill factor, and the number of dip coats used. An optimum withdrawal speed was identified at which f # was minimized and array uniformity was maximized. At this optimum, arrays of f/3.48 microlenses were fabricated with one dip coat with uniformity of better than Δf/ f ∼ ±3.8%. Multiple dip coats allowed for production of f/1.38 lens arrays and uniformity of better than Δf/ f ∼ ±5.9%. Average f #s were reproducible to within 3.5%. A model was developed to describe the fluid-transfer process by which monomer solution assembles on the hydrophilic domains. The model agrees well with experimental trends.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Taghizadeh, “Micro-optical fabrication technologies for optical interconnection applications,” in Diffractive Optics and Micro-Optics, Postconference Digest, Vol. 41 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 260.
  2. M. W. Haney, “Micro- versus macro-optics in free-space optical interconnects” in Diffractive Optics and Micro-Optics, Postconference Digest, Vol. 41 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 266–268.
  3. S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bachtold, M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photo. Technol. Lett. 12, 459–461 (2000).
    [CrossRef]
  4. G. Sharp, L. E. Schmutz, “Microlens arrays meet any challenge,” Lasers Optron. Lasers Optron. 16, 21–23 (1997).
  5. M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free-space integrated optics realized by surface-micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997).
    [CrossRef]
  6. M. F. Chang, M. C. Wu, J. J. Yao, M. E. Motamedi, “Surface micromachined devices for microwave and photonic applications,” in Optoelectronic Materials and Devices, M. Osinski, Y. Su, eds., Proc. SPIE3419, 214–226 (1998).
  7. S. Traut, H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng. 39, 290–298 (2000).
    [CrossRef]
  8. M. Eisner, N. Lindlein, J. Schwider, “Confocal microscopy with a refractive microlens-pinhole array,” Opt. Lett. 23, 748–749 (1998).
    [CrossRef]
  9. P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
    [CrossRef]
  10. M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
    [CrossRef]
  11. E. Kim, G. M. Whitesides, “Use of minimal free energy and self-assembly to form shapes,” Chem. Mater. 7, 1257–1264 (1995).
    [CrossRef]
  12. J. L. Wilbur, A. Kurmar, H. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–457 (1996).
    [CrossRef]
  13. H. Biebuyck, G. M. Whitesides, “Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold,” Langmuir 10, 2790–2793 (1994).
    [CrossRef]
  14. D. M. Hartmann, O. Kibar, S. C. Esener, “Characterization of a polymer microlens fabricated by use the hydrophobic effect,” Opt. Lett. 25, 975–977 (2000).
    [CrossRef]
  15. In using the resist reflow process there is a great deal of variability in the sag-height uniformity that can be achieved. Factors that affect the achievable uniformity include the lens pitch, sag height, fill factor, and lens size. Typical sag-height variations range from 44h/h ∼ ±2–10; John Rauseo, MEMS Optical Incorporated, 205 Import Circle, Huntsville Alabama 35806 (personal communication, 2000).
  16. L. Schwartz, “Hysteretic effects in droplet motions on heterogeneous substrates: direct numerical simulation,” Langmuir 14, 3440–3453 (1998).
    [CrossRef]
  17. L. Schwartz, R. Eley, “Simulation of droplet motion on low-energy and heterogeneous surfaces,” J. Colloid Interface Sci. 202, 173–188 (1998).
    [CrossRef]
  18. M. Schrader, G. Loeb, eds., Modern Approaches to Wettability: Theory and Applications (Plenum, New York, 1992).
    [CrossRef]
  19. L. Landau, B. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17, 43–54 (1942).
  20. L. M. Hocking, “Sliding and spreading of thin two-dimensional drops,” Q. J. Mech. Appl. Math. 34, 37–55 (1981).
    [CrossRef]
  21. P. Thompson, S. Troian, “A general boundary condition for liquid flow at solid surfaces,” Nature (London) 389, 360–362 (1997).
    [CrossRef]
  22. B. Jean-Louis, “Large slip effect at a nonwetting fluid–solid interface,” Phys. Rev. Lett. 82, 4671–4674 (1999).
    [CrossRef]
  23. B. Widom, “Line tension and the shape of a sessile drop,” J. Phys. Chem. 99, 2803–2806 (1995).
    [CrossRef]
  24. J. Pellicer, J. Manzanares, S. Mafe, “The physical description of elementary surface phenomena: thermodynamics versus mechanics,” Am. J. Phys. 63, 542–547 (1995).
    [CrossRef]
  25. F. Behroozi, H. Macomber, J. Dostal, C. Behroozi, B. Lambert, “The profile of a dew drop,” Am. J. Phys. 64, 1120–1125 (1996).
    [CrossRef]
  26. A. Eberle, A. Reich, “Angle-dependent dip-coating technique (ADDC) an improved method for the production of optical filters. 1. Process flow for hydrophobic patterning of microlenses,” J. Non-Cryst. Solids 218, 156–162 (1997).
    [CrossRef]

2000 (3)

S. Traut, H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng. 39, 290–298 (2000).
[CrossRef]

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bachtold, M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photo. Technol. Lett. 12, 459–461 (2000).
[CrossRef]

D. M. Hartmann, O. Kibar, S. C. Esener, “Characterization of a polymer microlens fabricated by use the hydrophobic effect,” Opt. Lett. 25, 975–977 (2000).
[CrossRef]

1999 (1)

B. Jean-Louis, “Large slip effect at a nonwetting fluid–solid interface,” Phys. Rev. Lett. 82, 4671–4674 (1999).
[CrossRef]

1998 (3)

L. Schwartz, “Hysteretic effects in droplet motions on heterogeneous substrates: direct numerical simulation,” Langmuir 14, 3440–3453 (1998).
[CrossRef]

L. Schwartz, R. Eley, “Simulation of droplet motion on low-energy and heterogeneous surfaces,” J. Colloid Interface Sci. 202, 173–188 (1998).
[CrossRef]

M. Eisner, N. Lindlein, J. Schwider, “Confocal microscopy with a refractive microlens-pinhole array,” Opt. Lett. 23, 748–749 (1998).
[CrossRef]

1997 (6)

P. Thompson, S. Troian, “A general boundary condition for liquid flow at solid surfaces,” Nature (London) 389, 360–362 (1997).
[CrossRef]

A. Eberle, A. Reich, “Angle-dependent dip-coating technique (ADDC) an improved method for the production of optical filters. 1. Process flow for hydrophobic patterning of microlenses,” J. Non-Cryst. Solids 218, 156–162 (1997).
[CrossRef]

G. Sharp, L. E. Schmutz, “Microlens arrays meet any challenge,” Lasers Optron. Lasers Optron. 16, 21–23 (1997).

M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free-space integrated optics realized by surface-micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997).
[CrossRef]

P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

1996 (2)

J. L. Wilbur, A. Kurmar, H. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–457 (1996).
[CrossRef]

F. Behroozi, H. Macomber, J. Dostal, C. Behroozi, B. Lambert, “The profile of a dew drop,” Am. J. Phys. 64, 1120–1125 (1996).
[CrossRef]

1995 (3)

B. Widom, “Line tension and the shape of a sessile drop,” J. Phys. Chem. 99, 2803–2806 (1995).
[CrossRef]

J. Pellicer, J. Manzanares, S. Mafe, “The physical description of elementary surface phenomena: thermodynamics versus mechanics,” Am. J. Phys. 63, 542–547 (1995).
[CrossRef]

E. Kim, G. M. Whitesides, “Use of minimal free energy and self-assembly to form shapes,” Chem. Mater. 7, 1257–1264 (1995).
[CrossRef]

1994 (1)

H. Biebuyck, G. M. Whitesides, “Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold,” Langmuir 10, 2790–2793 (1994).
[CrossRef]

1981 (1)

L. M. Hocking, “Sliding and spreading of thin two-dimensional drops,” Q. J. Mech. Appl. Math. 34, 37–55 (1981).
[CrossRef]

1942 (1)

L. Landau, B. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17, 43–54 (1942).

Arias, J. M.

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

Bachtold, W.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bachtold, M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photo. Technol. Lett. 12, 459–461 (2000).
[CrossRef]

Bajaj, J.

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

Behroozi, C.

F. Behroozi, H. Macomber, J. Dostal, C. Behroozi, B. Lambert, “The profile of a dew drop,” Am. J. Phys. 64, 1120–1125 (1996).
[CrossRef]

Behroozi, F.

F. Behroozi, H. Macomber, J. Dostal, C. Behroozi, B. Lambert, “The profile of a dew drop,” Am. J. Phys. 64, 1120–1125 (1996).
[CrossRef]

Biebuyck, H.

J. L. Wilbur, A. Kurmar, H. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–457 (1996).
[CrossRef]

H. Biebuyck, G. M. Whitesides, “Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold,” Langmuir 10, 2790–2793 (1994).
[CrossRef]

Chang, M. F.

M. F. Chang, M. C. Wu, J. J. Yao, M. E. Motamedi, “Surface micromachined devices for microwave and photonic applications,” in Optoelectronic Materials and Devices, M. Osinski, Y. Su, eds., Proc. SPIE3419, 214–226 (1998).

Dostal, J.

F. Behroozi, H. Macomber, J. Dostal, C. Behroozi, B. Lambert, “The profile of a dew drop,” Am. J. Phys. 64, 1120–1125 (1996).
[CrossRef]

Eberle, A.

A. Eberle, A. Reich, “Angle-dependent dip-coating technique (ADDC) an improved method for the production of optical filters. 1. Process flow for hydrophobic patterning of microlenses,” J. Non-Cryst. Solids 218, 156–162 (1997).
[CrossRef]

Eisner, M.

M. Eisner, N. Lindlein, J. Schwider, “Confocal microscopy with a refractive microlens-pinhole array,” Opt. Lett. 23, 748–749 (1998).
[CrossRef]

P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Eitel, S.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bachtold, M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photo. Technol. Lett. 12, 459–461 (2000).
[CrossRef]

Eley, R.

L. Schwartz, R. Eley, “Simulation of droplet motion on low-energy and heterogeneous surfaces,” J. Colloid Interface Sci. 202, 173–188 (1998).
[CrossRef]

Esener, S. C.

Fancey, S. J.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bachtold, M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photo. Technol. Lett. 12, 459–461 (2000).
[CrossRef]

Gauggel, H. P.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bachtold, M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photo. Technol. Lett. 12, 459–461 (2000).
[CrossRef]

Gluck, N. S.

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

Gulden, K. H.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bachtold, M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photo. Technol. Lett. 12, 459–461 (2000).
[CrossRef]

Hall, R. L.

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

Haney, M. W.

M. W. Haney, “Micro- versus macro-optics in free-space optical interconnects” in Diffractive Optics and Micro-Optics, Postconference Digest, Vol. 41 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 266–268.

Hartmann, D. M.

Haselbeck, S.

P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Herzig, H. P.

S. Traut, H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng. 39, 290–298 (2000).
[CrossRef]

P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Hocking, L. M.

L. M. Hocking, “Sliding and spreading of thin two-dimensional drops,” Q. J. Mech. Appl. Math. 34, 37–55 (1981).
[CrossRef]

Jean-Louis, B.

B. Jean-Louis, “Large slip effect at a nonwetting fluid–solid interface,” Phys. Rev. Lett. 82, 4671–4674 (1999).
[CrossRef]

Kibar, O.

Kim, E.

J. L. Wilbur, A. Kurmar, H. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–457 (1996).
[CrossRef]

E. Kim, G. M. Whitesides, “Use of minimal free energy and self-assembly to form shapes,” Chem. Mater. 7, 1257–1264 (1995).
[CrossRef]

King, C. R.

M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free-space integrated optics realized by surface-micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997).
[CrossRef]

Kurmar, A.

J. L. Wilbur, A. Kurmar, H. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–457 (1996).
[CrossRef]

Lambert, B.

F. Behroozi, H. Macomber, J. Dostal, C. Behroozi, B. Lambert, “The profile of a dew drop,” Am. J. Phys. 64, 1120–1125 (1996).
[CrossRef]

Landau, L.

L. Landau, B. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17, 43–54 (1942).

Lee, S. S.

M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free-space integrated optics realized by surface-micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997).
[CrossRef]

Levich, B.

L. Landau, B. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17, 43–54 (1942).

Lin, L. Y.

M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free-space integrated optics realized by surface-micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997).
[CrossRef]

Lindlein, N.

Macomber, H.

F. Behroozi, H. Macomber, J. Dostal, C. Behroozi, B. Lambert, “The profile of a dew drop,” Am. J. Phys. 64, 1120–1125 (1996).
[CrossRef]

Mafe, S.

J. Pellicer, J. Manzanares, S. Mafe, “The physical description of elementary surface phenomena: thermodynamics versus mechanics,” Am. J. Phys. 63, 542–547 (1995).
[CrossRef]

Manzanares, J.

J. Pellicer, J. Manzanares, S. Mafe, “The physical description of elementary surface phenomena: thermodynamics versus mechanics,” Am. J. Phys. 63, 542–547 (1995).
[CrossRef]

McLevige, W. V.

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

Melendes, R.

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

Motamedi, M. E.

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

M. F. Chang, M. C. Wu, J. J. Yao, M. E. Motamedi, “Surface micromachined devices for microwave and photonic applications,” in Optoelectronic Materials and Devices, M. Osinski, Y. Su, eds., Proc. SPIE3419, 214–226 (1998).

Nussbaum, P.

P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Park, S.

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

Pasko, J. G.

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

Pellicer, J.

J. Pellicer, J. Manzanares, S. Mafe, “The physical description of elementary surface phenomena: thermodynamics versus mechanics,” Am. J. Phys. 63, 542–547 (1995).
[CrossRef]

Rauseo, John

In using the resist reflow process there is a great deal of variability in the sag-height uniformity that can be achieved. Factors that affect the achievable uniformity include the lens pitch, sag height, fill factor, and lens size. Typical sag-height variations range from 44h/h ∼ ±2–10; John Rauseo, MEMS Optical Incorporated, 205 Import Circle, Huntsville Alabama 35806 (personal communication, 2000).

Reich, A.

A. Eberle, A. Reich, “Angle-dependent dip-coating technique (ADDC) an improved method for the production of optical filters. 1. Process flow for hydrophobic patterning of microlenses,” J. Non-Cryst. Solids 218, 156–162 (1997).
[CrossRef]

Richardson, P. D.

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

Sankur, H. O.

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

Schmutz, L. E.

G. Sharp, L. E. Schmutz, “Microlens arrays meet any challenge,” Lasers Optron. Lasers Optron. 16, 21–23 (1997).

Schwartz, L.

L. Schwartz, “Hysteretic effects in droplet motions on heterogeneous substrates: direct numerical simulation,” Langmuir 14, 3440–3453 (1998).
[CrossRef]

L. Schwartz, R. Eley, “Simulation of droplet motion on low-energy and heterogeneous surfaces,” J. Colloid Interface Sci. 202, 173–188 (1998).
[CrossRef]

Schwider, J.

Sharp, G.

G. Sharp, L. E. Schmutz, “Microlens arrays meet any challenge,” Lasers Optron. Lasers Optron. 16, 21–23 (1997).

Taghizadeh, M. R.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bachtold, M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photo. Technol. Lett. 12, 459–461 (2000).
[CrossRef]

M. R. Taghizadeh, “Micro-optical fabrication technologies for optical interconnection applications,” in Diffractive Optics and Micro-Optics, Postconference Digest, Vol. 41 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 260.

Tennant, W. E.

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

Thompson, P.

P. Thompson, S. Troian, “A general boundary condition for liquid flow at solid surfaces,” Nature (London) 389, 360–362 (1997).
[CrossRef]

Traut, S.

S. Traut, H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng. 39, 290–298 (2000).
[CrossRef]

Troian, S.

P. Thompson, S. Troian, “A general boundary condition for liquid flow at solid surfaces,” Nature (London) 389, 360–362 (1997).
[CrossRef]

Volkel, R.

P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Whitesides, G. M.

J. L. Wilbur, A. Kurmar, H. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–457 (1996).
[CrossRef]

E. Kim, G. M. Whitesides, “Use of minimal free energy and self-assembly to form shapes,” Chem. Mater. 7, 1257–1264 (1995).
[CrossRef]

H. Biebuyck, G. M. Whitesides, “Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold,” Langmuir 10, 2790–2793 (1994).
[CrossRef]

Widom, B.

B. Widom, “Line tension and the shape of a sessile drop,” J. Phys. Chem. 99, 2803–2806 (1995).
[CrossRef]

Wilbur, J. L.

J. L. Wilbur, A. Kurmar, H. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–457 (1996).
[CrossRef]

Wu, M. C.

M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free-space integrated optics realized by surface-micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997).
[CrossRef]

M. F. Chang, M. C. Wu, J. J. Yao, M. E. Motamedi, “Surface micromachined devices for microwave and photonic applications,” in Optoelectronic Materials and Devices, M. Osinski, Y. Su, eds., Proc. SPIE3419, 214–226 (1998).

Yao, J. J.

M. F. Chang, M. C. Wu, J. J. Yao, M. E. Motamedi, “Surface micromachined devices for microwave and photonic applications,” in Optoelectronic Materials and Devices, M. Osinski, Y. Su, eds., Proc. SPIE3419, 214–226 (1998).

Zandian, M.

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

Acta Physicochim. URSS (1)

L. Landau, B. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17, 43–54 (1942).

Am. J. Phys. (2)

J. Pellicer, J. Manzanares, S. Mafe, “The physical description of elementary surface phenomena: thermodynamics versus mechanics,” Am. J. Phys. 63, 542–547 (1995).
[CrossRef]

F. Behroozi, H. Macomber, J. Dostal, C. Behroozi, B. Lambert, “The profile of a dew drop,” Am. J. Phys. 64, 1120–1125 (1996).
[CrossRef]

Chem. Mater. (1)

E. Kim, G. M. Whitesides, “Use of minimal free energy and self-assembly to form shapes,” Chem. Mater. 7, 1257–1264 (1995).
[CrossRef]

IEEE Photo. Technol. Lett. (1)

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bachtold, M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photo. Technol. Lett. 12, 459–461 (2000).
[CrossRef]

Int. J. High Speed Electron. Syst. (1)

M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free-space integrated optics realized by surface-micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997).
[CrossRef]

J. Colloid Interface Sci. (1)

L. Schwartz, R. Eley, “Simulation of droplet motion on low-energy and heterogeneous surfaces,” J. Colloid Interface Sci. 202, 173–188 (1998).
[CrossRef]

J. Non-Cryst. Solids (1)

A. Eberle, A. Reich, “Angle-dependent dip-coating technique (ADDC) an improved method for the production of optical filters. 1. Process flow for hydrophobic patterning of microlenses,” J. Non-Cryst. Solids 218, 156–162 (1997).
[CrossRef]

J. Phys. Chem. (1)

B. Widom, “Line tension and the shape of a sessile drop,” J. Phys. Chem. 99, 2803–2806 (1995).
[CrossRef]

Langmuir (2)

L. Schwartz, “Hysteretic effects in droplet motions on heterogeneous substrates: direct numerical simulation,” Langmuir 14, 3440–3453 (1998).
[CrossRef]

H. Biebuyck, G. M. Whitesides, “Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold,” Langmuir 10, 2790–2793 (1994).
[CrossRef]

Lasers Optron. Lasers Optron. (1)

G. Sharp, L. E. Schmutz, “Microlens arrays meet any challenge,” Lasers Optron. Lasers Optron. 16, 21–23 (1997).

Nanotechnology (1)

J. L. Wilbur, A. Kurmar, H. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–457 (1996).
[CrossRef]

Nature (London) (1)

P. Thompson, S. Troian, “A general boundary condition for liquid flow at solid surfaces,” Nature (London) 389, 360–362 (1997).
[CrossRef]

Opt. Eng. (2)

S. Traut, H. P. Herzig, “Holographically recorded gratings on microlenses for a miniaturized spectrometer array,” Opt. Eng. 39, 290–298 (2000).
[CrossRef]

M. E. Motamedi, W. E. Tennant, H. O. Sankur, R. Melendes, N. S. Gluck, S. Park, J. M. Arias, J. Bajaj, J. G. Pasko, W. V. McLevige, M. Zandian, R. L. Hall, P. D. Richardson, “Micro-optic integration with focal plane arrays,” Opt. Eng. 36, 1374–1381 (1997).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

B. Jean-Louis, “Large slip effect at a nonwetting fluid–solid interface,” Phys. Rev. Lett. 82, 4671–4674 (1999).
[CrossRef]

Pure Appl. Opt. (1)

P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Q. J. Mech. Appl. Math. (1)

L. M. Hocking, “Sliding and spreading of thin two-dimensional drops,” Q. J. Mech. Appl. Math. 34, 37–55 (1981).
[CrossRef]

Other (5)

M. Schrader, G. Loeb, eds., Modern Approaches to Wettability: Theory and Applications (Plenum, New York, 1992).
[CrossRef]

In using the resist reflow process there is a great deal of variability in the sag-height uniformity that can be achieved. Factors that affect the achievable uniformity include the lens pitch, sag height, fill factor, and lens size. Typical sag-height variations range from 44h/h ∼ ±2–10; John Rauseo, MEMS Optical Incorporated, 205 Import Circle, Huntsville Alabama 35806 (personal communication, 2000).

M. F. Chang, M. C. Wu, J. J. Yao, M. E. Motamedi, “Surface micromachined devices for microwave and photonic applications,” in Optoelectronic Materials and Devices, M. Osinski, Y. Su, eds., Proc. SPIE3419, 214–226 (1998).

M. R. Taghizadeh, “Micro-optical fabrication technologies for optical interconnection applications,” in Diffractive Optics and Micro-Optics, Postconference Digest, Vol. 41 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), p. 260.

M. W. Haney, “Micro- versus macro-optics in free-space optical interconnects” in Diffractive Optics and Micro-Optics, Postconference Digest, Vol. 41 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 266–268.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Process flow for hydrophobic patterning of microlenses.

Fig. 2
Fig. 2

f # versus substrate withdrawal speed for 500-µm-diameter lenses (fill factor, ∼0.24), for Sartomer CD541 and Sartomer SR238 monomer solutions, and a C3H5(OH)3 solution.

Fig. 3
Fig. 3

f # of 100-µm-diameter lenses made with Sartomer CD541 (μ ∼ 440 cP) monomer solution, versus area ratio (hydrophilic area:hydrophobic area) for various withdrawal speeds.

Fig. 4
Fig. 4

f # of 100- and 250-µm-diameter lenses made with Sartomer CD541 (μ ∼ 440 cP) monomer solution, versus area ratio (hydrophilic area:hydrophobic area) for various withdrawal speeds.

Fig. 5
Fig. 5

f # of 50 µm-diameter microlenses versus the position of the lens in a row of 188 lenses, as measured from one of the edges of the row.

Fig. 6
Fig. 6

Δf/ f versus substrate withdrawal speed for 500-µm-diameter lenses (fill factor, ∼0.25), made with Ciba 5180 (μ ∼ 200 cP), and Sartomer CD541 (μ ∼ 440 cP) monomer solutions.

Fig. 7
Fig. 7

Optical and atomic force microscope pictures of the surface of a 50-µm-diameter (a) ∼f/3.5 lens made with one dip coat, (b) ∼f/1.6 lens made with two dip coats.

Fig. 8
Fig. 8

Schematic of the three-phase contact line as it rolls off the substrate. The contact line is symmetrical in the middle and asymmetrical at the edges.

Tables (1)

Tables Icon

Table 1 Minimum f # and the Speed at Which the Minimum f # is Formed for Several Monomer Solutions and a Glycerol Solutiona

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

SSL=σSV-σSL-σLV.
t=0.946 μU2/3ρg1/21σLV1/6=0.643 3μUσLV2/3(R).
u=a0θ02 ρgμ log2a0θ0/3λ.
cos θ0=σSV-σSL+τ/rσLV,
ta0θ04/3ρg/σ1/6log2a0θ0/3λ2/3.

Metrics