Abstract

An optical fiber refractometer based on a photometric return-path birefringence sensor is proposed. For measuring the refractive index, the phase shift between polarization components on total internal reflection inside a refractometric prism is used. Several kinds of refractometric prism are described. It is shown that a refractive-index sensitivity of 0.0001 and higher for a wide range of index values is attainable.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. V. Ioffe, Refractometric Techniques of Chemistry (Himiya, Leningrad, 1983), p. 352.
  2. E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
    [CrossRef]
  3. Yu. V. Mishchenko, “Fiber-optical interferometric refractometer for research of water media,” Meas. Tech. 41, 21–26 (1998).
  4. J. Zubia, G. Garitaonaida, J. Arrue, “Passive device based on plastic optical fibers to determine the indices of refraction of liquids,” Appl. Opt. 39, 941–946 (2000).
    [CrossRef]
  5. M. I. Shribak, “Measurement birefringence for normal reflection,” Sov. J. Opt. Technol. 56, 703–706 (1989).
  6. M. Born, E. Wolf, Principles of Optics (Pergamon, Elmsford, N.Y., 1980), p. 808.

2000 (1)

1998 (1)

Yu. V. Mishchenko, “Fiber-optical interferometric refractometer for research of water media,” Meas. Tech. 41, 21–26 (1998).

1995 (1)

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
[CrossRef]

1989 (1)

M. I. Shribak, “Measurement birefringence for normal reflection,” Sov. J. Opt. Technol. 56, 703–706 (1989).

Arrue, J.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Elmsford, N.Y., 1980), p. 808.

Garitaonaida, G.

Ioffe, B. V.

B. V. Ioffe, Refractometric Techniques of Chemistry (Himiya, Leningrad, 1983), p. 352.

Mishchenko, Yu. V.

Yu. V. Mishchenko, “Fiber-optical interferometric refractometer for research of water media,” Meas. Tech. 41, 21–26 (1998).

Shribak, M. I.

M. I. Shribak, “Measurement birefringence for normal reflection,” Sov. J. Opt. Technol. 56, 703–706 (1989).

Udd, E.

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Elmsford, N.Y., 1980), p. 808.

Zubia, J.

Appl. Opt. (1)

Meas. Tech. (1)

Yu. V. Mishchenko, “Fiber-optical interferometric refractometer for research of water media,” Meas. Tech. 41, 21–26 (1998).

Rev. Sci. Instrum. (1)

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66, 4015–4030 (1995).
[CrossRef]

Sov. J. Opt. Technol. (1)

M. I. Shribak, “Measurement birefringence for normal reflection,” Sov. J. Opt. Technol. 56, 703–706 (1989).

Other (2)

M. Born, E. Wolf, Principles of Optics (Pergamon, Elmsford, N.Y., 1980), p. 808.

B. V. Ioffe, Refractometric Techniques of Chemistry (Himiya, Leningrad, 1983), p. 352.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the polarimetric optical fiber refractometer. The components of transceiver I, sensor unit II, and processing unit III are defined in the text.

Fig. 2
Fig. 2

(a) Schematic of the right-angle refractometric prism. (b) Dependence of the output signal on the refractive index of the experimental medium for the refractometric prisms made from Schott glasses F2, SF11, and SF57.

Fig. 3
Fig. 3

(a) Schematic of the trapezoidal prism. (b) Dependence of the output signal on the refractive index of the experimental medium for the refractometric prisms made from Schott glasses F2, SF11, and SF57.

Tables (1)

Tables Icon

Table 1 Parameters of Refractometric Prisms Made from Schott Glasses F2, SF11, and SF57a

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

IpIs0.5I0.
Ip=0.51+cosj=1N ΔjIp,Is=0.51-cosj=1N ΔjIp,
Ip=0.51-cosj=1N ΔjIs,Is=0.51+cosj=1N ΔjIs.
I1=k11-cosj=1N ΔjI0,I2=k21+cosj=1N ΔjI0,
i1=s1k1k*1-cosj=1N ΔjI0,i2=s2k21+cosj=1N ΔjI0,
iout=i1-i2i1+i2=-cosj=1N Δj.
Δj=2 tan-1cos εjnrp2 sin2 εj-nm21/2nrp sin2 εj,
ñm=nrp sin ε.
Δj=2 tan-11nrpnrp2-2nm21/2.
1nmnrp20.707nrp.
iout=1-2nm4nrp2-nm22.
1-2nrp2-12iout-1.
nm=nrp2-10.644nrp.
Δj=2 tan-113nrp3nrp2-4nm21/2.
1nm32 nrp0.87nrp.
iout=123nrp2+2nm218nrp4-30nrp2nm2-nm43nrp2-nm23.
123nrp2+218nrp4-30nrp2-13nrp2-13iout-1.
nm=nrp93-150.767nrp.

Metrics