Abstract

Time-division multiplexing is a promising method for the interrogation of fiber-optic Bragg grating sensors arrays for measurement of strain and temperature. We examine the performance of these systems to determine the parameters for high-sensitivity, low-cross-talk operation. It is shown that the performance can be greatly improved by use of a short time resolution in the demultiplexing process. We propose a new method of demultiplexing with an electro-optic modulator to read out the sensor pulses by gating the signal with 400-ps resolution. The system is demonstrated experimentally to provide 0.15-µε/ Hz strain resolution in a 50-Hz bandwidth within a full-scale range of 8000 µε. The system parameters are capable of handling at least 50 time-addressed sensors on a single fiber.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, J. E. Frieble, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
    [CrossRef]
  2. R. M. Measures, Fiber Optic Smart Structures, E. Udd, ed. (Wiley, Toronto, 1995).
  3. W. W. Morey, J. R. Dunphy, G. Meltz, “Multiplexing fiber Bragg grating sensors,” in Distributed and Multiplexed Fiber Optic Sensors, A. Kersey, P. Dakin, eds., Proc. SPIE1586, 216–224 (1992).
    [CrossRef]
  4. C. G. Askins, M. A. Putnam, G. M. Williams, E. J. Friebele, “Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower,” Opt. Lett. 19, 147–149 (1994).
    [CrossRef] [PubMed]
  5. C. G. Askins, M. A. Putnam, E. J. Friebele, “Instrumentation for interrogating many-element fiber Bragg grating arrays,” in Distributed and Multiplexed Fiber Optic Sensors, A. Kersey, P. Dakin, eds., Proc. SPIE1586, 216–224 (1995).
  6. T. A. Berkoff, A. D. Kersey, “Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection,” IEEE Photon. Technol. Lett. 8, 1522–1524 (1996).
    [CrossRef]
  7. A. D. Kersey, T. A. Berkoff, W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter,” Opt. Lett. 18, 1370–1372 (1993).
    [CrossRef]
  8. S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demultiplexing system for guided wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
    [CrossRef]
  9. H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
    [CrossRef]
  10. W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, E. Udd, R. P. DePaula, eds., Proc. SPIE1169, 98–107 (1989).
    [CrossRef]
  11. M. A. Putnam, M. L. Dennis, I. N. Duling, C. G. Atkins, E. J. Frieble, “Broadband square pulse operation of a passively mode-locked fiber laser for fiber Bragg grating interrogation,” Opt. Lett. 23, 138–140 (1998).
    [CrossRef]
  12. H. A. Haus, E. P. Ippen, “Short-pulse fiber lasers,” in Conference on Lasers and ElectroOptics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 522–523.
  13. I. N. Duling, M. L. Dennis, Compact Sources of Ultrashort Pulses (Cambridge U. Press, Cambridge, 1995).
    [CrossRef]
  14. T. A. Berkoff, A. D. Kersey, “Eight element time-division multiplexed fiber grating sensor array with integrated-optic wavelength discriminator,” in Second European Conference onSmart Structures and Materials, A. McDonach, P. T. Gardiner, R. S. McEwen, B. Culshaw, eds., Proc. SPIE2361, 342–345 (1994).
  15. M. A. Davis, D. G. Bellemore, A. D. Kersey, “Structural strain mapping using a wavelength/time division addressed fiber Bragg grating array,” in Second European Conference on Smart Structures and Materials, A. McDonach, P. T. Gardiner, R. S. McEwen, B. Culshaw, eds., Proc. SPIE2361, 350–353 (1994).
  16. L. R. Chen, S. D. Benjamin, P. W. E. Smith, J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
    [CrossRef]
  17. R. M. Measures, M. M. Ohn, S. Y. Huang, J. Bingue, N. Y. Fan, “Tunable laser demodulation of various fiber Bragg grating sensing modalities,” Smart Mater. Struct. 7, 237–247 (1998).
    [CrossRef]
  18. D. G. Moodie, M. J. Harlow, M. J. Guy, S. D. Perrin, C. W. Ford, M. J. Robertson, “Discrete electroabsorption modulators with enhanced modulation depth,” J. Lightwave Technol. 14, 2035–2043 (1996).
    [CrossRef]
  19. T. A. Berkoff, M. A. Davis, D. G. Bellemore, A. D. Kersey, G. M. Williams, M. A. Putnam, “Hybrid time and wavelength division multiplexed fiber Bragg grating sensor array,” in Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation, W. B. Spillman, ed., Proc. SPIE2444, 288–294 (1995).

1998 (2)

M. A. Putnam, M. L. Dennis, I. N. Duling, C. G. Atkins, E. J. Frieble, “Broadband square pulse operation of a passively mode-locked fiber laser for fiber Bragg grating interrogation,” Opt. Lett. 23, 138–140 (1998).
[CrossRef]

R. M. Measures, M. M. Ohn, S. Y. Huang, J. Bingue, N. Y. Fan, “Tunable laser demodulation of various fiber Bragg grating sensing modalities,” Smart Mater. Struct. 7, 237–247 (1998).
[CrossRef]

1997 (2)

L. R. Chen, S. D. Benjamin, P. W. E. Smith, J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, J. E. Frieble, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

1996 (2)

T. A. Berkoff, A. D. Kersey, “Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection,” IEEE Photon. Technol. Lett. 8, 1522–1524 (1996).
[CrossRef]

D. G. Moodie, M. J. Harlow, M. J. Guy, S. D. Perrin, C. W. Ford, M. J. Robertson, “Discrete electroabsorption modulators with enhanced modulation depth,” J. Lightwave Technol. 14, 2035–2043 (1996).
[CrossRef]

1994 (1)

1993 (1)

1992 (1)

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demultiplexing system for guided wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

1976 (1)

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, J. E. Frieble, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

C. G. Askins, M. A. Putnam, G. M. Williams, E. J. Friebele, “Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower,” Opt. Lett. 19, 147–149 (1994).
[CrossRef] [PubMed]

C. G. Askins, M. A. Putnam, E. J. Friebele, “Instrumentation for interrogating many-element fiber Bragg grating arrays,” in Distributed and Multiplexed Fiber Optic Sensors, A. Kersey, P. Dakin, eds., Proc. SPIE1586, 216–224 (1995).

Atkins, C. G.

Bellemore, D. G.

M. A. Davis, D. G. Bellemore, A. D. Kersey, “Structural strain mapping using a wavelength/time division addressed fiber Bragg grating array,” in Second European Conference on Smart Structures and Materials, A. McDonach, P. T. Gardiner, R. S. McEwen, B. Culshaw, eds., Proc. SPIE2361, 350–353 (1994).

T. A. Berkoff, M. A. Davis, D. G. Bellemore, A. D. Kersey, G. M. Williams, M. A. Putnam, “Hybrid time and wavelength division multiplexed fiber Bragg grating sensor array,” in Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation, W. B. Spillman, ed., Proc. SPIE2444, 288–294 (1995).

Benjamin, S. D.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[CrossRef]

Berkoff, T. A.

T. A. Berkoff, A. D. Kersey, “Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection,” IEEE Photon. Technol. Lett. 8, 1522–1524 (1996).
[CrossRef]

A. D. Kersey, T. A. Berkoff, W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter,” Opt. Lett. 18, 1370–1372 (1993).
[CrossRef]

T. A. Berkoff, A. D. Kersey, “Eight element time-division multiplexed fiber grating sensor array with integrated-optic wavelength discriminator,” in Second European Conference onSmart Structures and Materials, A. McDonach, P. T. Gardiner, R. S. McEwen, B. Culshaw, eds., Proc. SPIE2361, 342–345 (1994).

T. A. Berkoff, M. A. Davis, D. G. Bellemore, A. D. Kersey, G. M. Williams, M. A. Putnam, “Hybrid time and wavelength division multiplexed fiber Bragg grating sensor array,” in Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation, W. B. Spillman, ed., Proc. SPIE2444, 288–294 (1995).

Bingue, J.

R. M. Measures, M. M. Ohn, S. Y. Huang, J. Bingue, N. Y. Fan, “Tunable laser demodulation of various fiber Bragg grating sensing modalities,” Smart Mater. Struct. 7, 237–247 (1998).
[CrossRef]

Chen, L. R.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, J. E. Frieble, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

T. A. Berkoff, M. A. Davis, D. G. Bellemore, A. D. Kersey, G. M. Williams, M. A. Putnam, “Hybrid time and wavelength division multiplexed fiber Bragg grating sensor array,” in Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation, W. B. Spillman, ed., Proc. SPIE2444, 288–294 (1995).

M. A. Davis, D. G. Bellemore, A. D. Kersey, “Structural strain mapping using a wavelength/time division addressed fiber Bragg grating array,” in Second European Conference on Smart Structures and Materials, A. McDonach, P. T. Gardiner, R. S. McEwen, B. Culshaw, eds., Proc. SPIE2361, 350–353 (1994).

Dennis, M. L.

Duling, I. N.

Dunphy, J. R.

W. W. Morey, J. R. Dunphy, G. Meltz, “Multiplexing fiber Bragg grating sensors,” in Distributed and Multiplexed Fiber Optic Sensors, A. Kersey, P. Dakin, eds., Proc. SPIE1586, 216–224 (1992).
[CrossRef]

Fan, N. Y.

R. M. Measures, M. M. Ohn, S. Y. Huang, J. Bingue, N. Y. Fan, “Tunable laser demodulation of various fiber Bragg grating sensing modalities,” Smart Mater. Struct. 7, 237–247 (1998).
[CrossRef]

Ford, C. W.

D. G. Moodie, M. J. Harlow, M. J. Guy, S. D. Perrin, C. W. Ford, M. J. Robertson, “Discrete electroabsorption modulators with enhanced modulation depth,” J. Lightwave Technol. 14, 2035–2043 (1996).
[CrossRef]

Friebele, E. J.

C. G. Askins, M. A. Putnam, G. M. Williams, E. J. Friebele, “Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower,” Opt. Lett. 19, 147–149 (1994).
[CrossRef] [PubMed]

C. G. Askins, M. A. Putnam, E. J. Friebele, “Instrumentation for interrogating many-element fiber Bragg grating arrays,” in Distributed and Multiplexed Fiber Optic Sensors, A. Kersey, P. Dakin, eds., Proc. SPIE1586, 216–224 (1995).

Frieble, E. J.

Frieble, J. E.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, J. E. Frieble, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Glenn, W. H.

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, E. Udd, R. P. DePaula, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

Guy, M. J.

D. G. Moodie, M. J. Harlow, M. J. Guy, S. D. Perrin, C. W. Ford, M. J. Robertson, “Discrete electroabsorption modulators with enhanced modulation depth,” J. Lightwave Technol. 14, 2035–2043 (1996).
[CrossRef]

Harlow, M. J.

D. G. Moodie, M. J. Harlow, M. J. Guy, S. D. Perrin, C. W. Ford, M. J. Robertson, “Discrete electroabsorption modulators with enhanced modulation depth,” J. Lightwave Technol. 14, 2035–2043 (1996).
[CrossRef]

Haus, H. A.

H. A. Haus, E. P. Ippen, “Short-pulse fiber lasers,” in Conference on Lasers and ElectroOptics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 522–523.

Huang, S. Y.

R. M. Measures, M. M. Ohn, S. Y. Huang, J. Bingue, N. Y. Fan, “Tunable laser demodulation of various fiber Bragg grating sensing modalities,” Smart Mater. Struct. 7, 237–247 (1998).
[CrossRef]

Ippen, E. P.

H. A. Haus, E. P. Ippen, “Short-pulse fiber lasers,” in Conference on Lasers and ElectroOptics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 522–523.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, J. E. Frieble, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

T. A. Berkoff, A. D. Kersey, “Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection,” IEEE Photon. Technol. Lett. 8, 1522–1524 (1996).
[CrossRef]

A. D. Kersey, T. A. Berkoff, W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter,” Opt. Lett. 18, 1370–1372 (1993).
[CrossRef]

T. A. Berkoff, A. D. Kersey, “Eight element time-division multiplexed fiber grating sensor array with integrated-optic wavelength discriminator,” in Second European Conference onSmart Structures and Materials, A. McDonach, P. T. Gardiner, R. S. McEwen, B. Culshaw, eds., Proc. SPIE2361, 342–345 (1994).

T. A. Berkoff, M. A. Davis, D. G. Bellemore, A. D. Kersey, G. M. Williams, M. A. Putnam, “Hybrid time and wavelength division multiplexed fiber Bragg grating sensor array,” in Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation, W. B. Spillman, ed., Proc. SPIE2444, 288–294 (1995).

M. A. Davis, D. G. Bellemore, A. D. Kersey, “Structural strain mapping using a wavelength/time division addressed fiber Bragg grating array,” in Second European Conference on Smart Structures and Materials, A. McDonach, P. T. Gardiner, R. S. McEwen, B. Culshaw, eds., Proc. SPIE2361, 350–353 (1994).

Kogelnik, H.

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, J. E. Frieble, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Leblanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, J. E. Frieble, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Liu, K.

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demultiplexing system for guided wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

Measures, R. M.

R. M. Measures, M. M. Ohn, S. Y. Huang, J. Bingue, N. Y. Fan, “Tunable laser demodulation of various fiber Bragg grating sensing modalities,” Smart Mater. Struct. 7, 237–247 (1998).
[CrossRef]

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demultiplexing system for guided wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

R. M. Measures, Fiber Optic Smart Structures, E. Udd, ed. (Wiley, Toronto, 1995).

Melle, S. M.

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demultiplexing system for guided wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

Meltz, G.

W. W. Morey, J. R. Dunphy, G. Meltz, “Multiplexing fiber Bragg grating sensors,” in Distributed and Multiplexed Fiber Optic Sensors, A. Kersey, P. Dakin, eds., Proc. SPIE1586, 216–224 (1992).
[CrossRef]

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, E. Udd, R. P. DePaula, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

Moodie, D. G.

D. G. Moodie, M. J. Harlow, M. J. Guy, S. D. Perrin, C. W. Ford, M. J. Robertson, “Discrete electroabsorption modulators with enhanced modulation depth,” J. Lightwave Technol. 14, 2035–2043 (1996).
[CrossRef]

Morey, W. W.

A. D. Kersey, T. A. Berkoff, W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter,” Opt. Lett. 18, 1370–1372 (1993).
[CrossRef]

W. W. Morey, J. R. Dunphy, G. Meltz, “Multiplexing fiber Bragg grating sensors,” in Distributed and Multiplexed Fiber Optic Sensors, A. Kersey, P. Dakin, eds., Proc. SPIE1586, 216–224 (1992).
[CrossRef]

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, E. Udd, R. P. DePaula, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

Ohn, M. M.

R. M. Measures, M. M. Ohn, S. Y. Huang, J. Bingue, N. Y. Fan, “Tunable laser demodulation of various fiber Bragg grating sensing modalities,” Smart Mater. Struct. 7, 237–247 (1998).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, J. E. Frieble, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Perrin, S. D.

D. G. Moodie, M. J. Harlow, M. J. Guy, S. D. Perrin, C. W. Ford, M. J. Robertson, “Discrete electroabsorption modulators with enhanced modulation depth,” J. Lightwave Technol. 14, 2035–2043 (1996).
[CrossRef]

Putnam, M. A.

M. A. Putnam, M. L. Dennis, I. N. Duling, C. G. Atkins, E. J. Frieble, “Broadband square pulse operation of a passively mode-locked fiber laser for fiber Bragg grating interrogation,” Opt. Lett. 23, 138–140 (1998).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, J. E. Frieble, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

C. G. Askins, M. A. Putnam, G. M. Williams, E. J. Friebele, “Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower,” Opt. Lett. 19, 147–149 (1994).
[CrossRef] [PubMed]

T. A. Berkoff, M. A. Davis, D. G. Bellemore, A. D. Kersey, G. M. Williams, M. A. Putnam, “Hybrid time and wavelength division multiplexed fiber Bragg grating sensor array,” in Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation, W. B. Spillman, ed., Proc. SPIE2444, 288–294 (1995).

C. G. Askins, M. A. Putnam, E. J. Friebele, “Instrumentation for interrogating many-element fiber Bragg grating arrays,” in Distributed and Multiplexed Fiber Optic Sensors, A. Kersey, P. Dakin, eds., Proc. SPIE1586, 216–224 (1995).

Robertson, M. J.

D. G. Moodie, M. J. Harlow, M. J. Guy, S. D. Perrin, C. W. Ford, M. J. Robertson, “Discrete electroabsorption modulators with enhanced modulation depth,” J. Lightwave Technol. 14, 2035–2043 (1996).
[CrossRef]

Sipe, J. E.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[CrossRef]

Smith, P. W. E.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[CrossRef]

Williams, G. M.

C. G. Askins, M. A. Putnam, G. M. Williams, E. J. Friebele, “Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower,” Opt. Lett. 19, 147–149 (1994).
[CrossRef] [PubMed]

T. A. Berkoff, M. A. Davis, D. G. Bellemore, A. D. Kersey, G. M. Williams, M. A. Putnam, “Hybrid time and wavelength division multiplexed fiber Bragg grating sensor array,” in Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation, W. B. Spillman, ed., Proc. SPIE2444, 288–294 (1995).

Bell Syst. Tech. J. (1)

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55, 109–126 (1976).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. A. Berkoff, A. D. Kersey, “Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection,” IEEE Photon. Technol. Lett. 8, 1522–1524 (1996).
[CrossRef]

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demultiplexing system for guided wave Bragg grating sensors,” IEEE Photon. Technol. Lett. 4, 516–518 (1992).
[CrossRef]

J. Lightwave Technol. (3)

D. G. Moodie, M. J. Harlow, M. J. Guy, S. D. Perrin, C. W. Ford, M. J. Robertson, “Discrete electroabsorption modulators with enhanced modulation depth,” J. Lightwave Technol. 14, 2035–2043 (1996).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, J. E. Frieble, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

L. R. Chen, S. D. Benjamin, P. W. E. Smith, J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997).
[CrossRef]

Opt. Lett. (3)

Smart Mater. Struct. (1)

R. M. Measures, M. M. Ohn, S. Y. Huang, J. Bingue, N. Y. Fan, “Tunable laser demodulation of various fiber Bragg grating sensing modalities,” Smart Mater. Struct. 7, 237–247 (1998).
[CrossRef]

Other (9)

R. M. Measures, Fiber Optic Smart Structures, E. Udd, ed. (Wiley, Toronto, 1995).

W. W. Morey, J. R. Dunphy, G. Meltz, “Multiplexing fiber Bragg grating sensors,” in Distributed and Multiplexed Fiber Optic Sensors, A. Kersey, P. Dakin, eds., Proc. SPIE1586, 216–224 (1992).
[CrossRef]

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, E. Udd, R. P. DePaula, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

H. A. Haus, E. P. Ippen, “Short-pulse fiber lasers,” in Conference on Lasers and ElectroOptics, Vol. 9 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 522–523.

I. N. Duling, M. L. Dennis, Compact Sources of Ultrashort Pulses (Cambridge U. Press, Cambridge, 1995).
[CrossRef]

T. A. Berkoff, A. D. Kersey, “Eight element time-division multiplexed fiber grating sensor array with integrated-optic wavelength discriminator,” in Second European Conference onSmart Structures and Materials, A. McDonach, P. T. Gardiner, R. S. McEwen, B. Culshaw, eds., Proc. SPIE2361, 342–345 (1994).

M. A. Davis, D. G. Bellemore, A. D. Kersey, “Structural strain mapping using a wavelength/time division addressed fiber Bragg grating array,” in Second European Conference on Smart Structures and Materials, A. McDonach, P. T. Gardiner, R. S. McEwen, B. Culshaw, eds., Proc. SPIE2361, 350–353 (1994).

T. A. Berkoff, M. A. Davis, D. G. Bellemore, A. D. Kersey, G. M. Williams, M. A. Putnam, “Hybrid time and wavelength division multiplexed fiber Bragg grating sensor array,” in Smart Structures and Materials 1995: Smart Sensing, Processing, and Instrumentation, W. B. Spillman, ed., Proc. SPIE2444, 288–294 (1995).

C. G. Askins, M. A. Putnam, E. J. Friebele, “Instrumentation for interrogating many-element fiber Bragg grating arrays,” in Distributed and Multiplexed Fiber Optic Sensors, A. Kersey, P. Dakin, eds., Proc. SPIE1586, 216–224 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Typical block diagram of a system for a TDM fiber Bragg grating sensor array.

Fig. 2
Fig. 2

Illustration of interference caused by multiple reflections within the sensor array. Here, the last grating sensor is at a different Bragg wavelength (λ s ) from the first two sensors (λ i ) that are causing the interference. The strain reading will be in error if the multiply reflected pulse returns at the same time as the reflection from the last grating.

Fig. 3
Fig. 3

Worst-case ratio of power in multiply reflected pulses to the desired reflected pulse as a function of the number of grating sensors. The worst case will occur when all the gratings except the one being monitored are at the same Bragg wavelength and all the time slots of the sensor system are in use.

Fig. 4
Fig. 4

Illustration of interference caused by spectral shadowing. The spectrum of the sensor that is being monitored will be skewed if the first grating is slightly offset in Bragg wavelength from the second grating. The dashed curves indicate the expected shapes of the spectra in the absence of spectral shadowing.

Fig. 5
Fig. 5

Method for demultiplexing the Bragg grating sensor array: (a) configuration for gating pulses from the array, (b) illustration of the operation of the electro-optic gate.

Fig. 6
Fig. 6

Experimental setup for multiplexing an array of fiber Bragg grating sensors. The demultiplexer uses an electro-optic gate, as shown in Fig. 5.

Fig. 7
Fig. 7

Typical optical spectrum used to interrogate the sensor array, showing a usable bandwidth of 16 nm: (a) full spectrum, (b) expanded scale of the flat portion of the spectrum. The spectrum was measured with 1.0-nm resolution.

Fig. 8
Fig. 8

Autocorrelation trace of the interrogation pulse at the input to the sensor array.

Fig. 9
Fig. 9

Transmission of the modulator for a single-pulse input as a function of delay from the trigger signal. The gate width is 400 ps. (a) Periodic transmission with the repetition rate of the laser, (b) expanded scale from which the impedance mismatch of the modulator is evident.

Fig. 10
Fig. 10

Optical spectrum at the output of the sensor array for a two-sensor system. (a) The gating is turned off and the entire spectrum returned from the array is shown. (b) The optical spectrum when the first grating is selected. (c) The second grating is selected. In all cases the spectrum was measured with 0.2-nm resolution.

Fig. 11
Fig. 11

Optical spectrum from a three-sensor Bragg grating sensor array. The first grating is selected. The spectrum was measured with 0.2-nm resolution.

Fig. 12
Fig. 12

Strain response of the Bragg grating sensor array. The first grating was strained in incremental steps by more than 1000 µε, and the strain signal of the three gratings was monitored. The measurement was low-pass filtered with a 50-Hz bandwidth.

Fig. 13
Fig. 13

Close-up of strain on the third grating of Fig. 12, showing the effects of cross talk. The spectrum from the demultiplexing unit is shown in the inset.

Fig. 14
Fig. 14

Plot of the strain signal from the first grating as a function of time. The signal has a rms noise of 1 µε and a bandwidth of 50 Hz.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

SNR=P0/2eB,
Tλ=λ-λ0λ1-λ0,  λ0<λ<λ1
SNRf=P08eB,SNRr=P04eB.
SNR0=T2λTnoise2=P012eB,
D=P0/3eB1/2.
R2/1-R2N-2N-1/2,
Rmλ=1-Rλ-λos2Rλ1-2Rλ-λosRλ.
Centroid=- λRmλdλ- Rmλdλ.
Wavelength Shift=2RΛπ2x1-sincx,
PN  R1-R2N-2.
Rmax=12N-1.
TV=sin2π2VVπ+ϕ0,

Metrics