Abstract

It is reported that reversible changes in the reflectivity of Bragg gratings can be induced by a change in the temperature of the grating (77 K < T < 573 K). The changes have proved to be greater in highly doped Ge fibers than in standard fibers, whereas they could hardly be detected in hydrogenated fibers. The sign of the change for type I gratings was opposite that for type IIA gratings. The changes are likely due to a temperature-induced increase (or a decrease) in the amplitude of the refractive-index modulation. Possible mechanisms for these changes in modulation are discussed. Interestingly for the purpose of correcting data of isothermal accelerated aging experiments, a numerical relation that accounts for the temperature-induced changes in type I grating reflectivity is given.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings by a transverse holographic method,” Opt. Lett. 4, 823–825 (1989).
    [CrossRef]
  2. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, “Photosensitivity in optical fibers,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
    [CrossRef]
  3. I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
  4. K. O. Hill, P. St, J. Russell, G. Meltz, A. M. Vengsarkar, eds., special issue on fiber gratings, photosensitivity, and poling,” J. Lightwave Technol. 15, 1261–1503 (1997).
  5. R. Kashyap, Fiber Bragg Gratings, P. L. Kelly, I. Kaminov, G. Agrawal, eds., Optics and Photonics Series (Academic, San Diego, Calif., 1999), Chap. 1.
  6. T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
    [CrossRef]
  7. B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
    [CrossRef]
  8. M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, T. Georges, “Thermal hysteresis of Bragg wavelengths of intracore fiber grating,” IEEE Photon. Technol. Lett. 5, 1331–1334 (1993).
    [CrossRef]
  9. G. W. Yoffe, P. A. Krug, F. Ouellette, D. A. Thorncraft, “Passive temperature compensating package for optical fiber gratings,” Appl. Opt. 34, 6859–6861 (1995).
    [CrossRef] [PubMed]
  10. D. Razafimahatratra, P. Niay, M. Douay, B. Poumellec, I. Riant, “Comparison of isochronal and isothermal decays of Bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber,” Appl. Opt. 39, 1924–1933 (2000).
    [CrossRef]
  11. T. Erdogan, V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11, 2100–2105 (1994).
    [CrossRef]
  12. S. Takahashi, S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
    [CrossRef]
  13. K. Saito, A. J. Ikushima, “Development of a wide-temperature range VUV and UV spectrophotometer and its applications to silica glass,” J. Non Cryst. Sol. 259, 81–86 (1999).
    [CrossRef]
  14. M. Takahashi, T. Fujiwara, T. Kawachi, A. J. Ikushima, “Thermal equilibrium of Ge-related defects in a GeO2–SiO2 glass,” Appl. Phys. Lett. 72, 1287–1289 (1998).
    [CrossRef]
  15. B. Leconte, “Contribution à l’étude de la photosensibilité des fibres en silice sous l’effet d’une insolation par un laser à ArF,” Ph.D. dissertation (University of Lille 1, Lille, France, 1998).
  16. T. E. Tsai, G. Williams, E. J. Friebele, “Uniform component of index structure induced in Ge-SiO2 fibers by spatially modulated ultraviolet light,” Appl. Phys. Lett. 72, 3242–3245 (1998).
  17. B. Leconte, W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge-SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–5930 (1997).
    [CrossRef] [PubMed]
  18. H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
    [CrossRef]
  19. M. V. Bazylenko, D. Moss, J. Canning, “Complex photosensitivity observed in germanosilicate planar waveguides,” Opt. Lett. 23, 697–699 (1998).
    [CrossRef]
  20. J. Canning, M. Aslund, “Correlation of ultraviolet-induced stress changes and negative index growth in type IIa germanosilicate waveguide gratings,” Opt. Lett. 24, 463–465 (1999).
    [CrossRef]
  21. P. Cordier, S. Dupont, M. Douay, G. Martinelli, P. Bernage, P. Niay, J. F. Bayon, L. Dong, “Transmission electron microscopy evidence of densification associated to Bragg grating photoimprinted in germanosilicate optical fibers,” Appl. Phys. Lett. 70, 1204–1206 (1997).
    [CrossRef]
  22. M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
    [CrossRef]
  23. K. S. Chiang, M. G. Sceats, D. Wong, “Ultraviolet photolytic induced changes in optical fibers: the thermal expansion coefficient,” Opt. Lett. 18, 965–967 (1993).
    [CrossRef] [PubMed]
  24. B. Poumellec, P. Niay, M. Douay, J. F. Bayon, “The UV-induced refractive index grating in Ge:SiO2 preforms: additional cw experiments and the macroscopic origin of the change in index,” J. Phys. D 29, 1842–1856 (1996).
    [CrossRef]
  25. D. Wong, “Analysis and applications of stresses in optical fibres and sensors,” P.h.D. dissertation (University of New South Wales, Sidney, NSW, Australia, 1990).
  26. W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. SPIE1169, 98–107 (1989).
    [CrossRef]
  27. A. Hidayat, Q. Wang, M. Douay, P. Niay, “Influence of strain and temperature on grating reflectivity,” in Conference on Lasers and Electro-Optics in (CLEO/Europe), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), Paper TuK90.
  28. S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B 7, 3767–3777 (1973).
    [CrossRef]

2000

1999

K. Saito, A. J. Ikushima, “Development of a wide-temperature range VUV and UV spectrophotometer and its applications to silica glass,” J. Non Cryst. Sol. 259, 81–86 (1999).
[CrossRef]

J. Canning, M. Aslund, “Correlation of ultraviolet-induced stress changes and negative index growth in type IIa germanosilicate waveguide gratings,” Opt. Lett. 24, 463–465 (1999).
[CrossRef]

1998

M. Takahashi, T. Fujiwara, T. Kawachi, A. J. Ikushima, “Thermal equilibrium of Ge-related defects in a GeO2–SiO2 glass,” Appl. Phys. Lett. 72, 1287–1289 (1998).
[CrossRef]

T. E. Tsai, G. Williams, E. J. Friebele, “Uniform component of index structure induced in Ge-SiO2 fibers by spatially modulated ultraviolet light,” Appl. Phys. Lett. 72, 3242–3245 (1998).

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
[CrossRef]

M. V. Bazylenko, D. Moss, J. Canning, “Complex photosensitivity observed in germanosilicate planar waveguides,” Opt. Lett. 23, 697–699 (1998).
[CrossRef]

1997

K. O. Hill, P. St, J. Russell, G. Meltz, A. M. Vengsarkar, eds., special issue on fiber gratings, photosensitivity, and poling,” J. Lightwave Technol. 15, 1261–1503 (1997).

B. Leconte, W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge-SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–5930 (1997).
[CrossRef] [PubMed]

P. Cordier, S. Dupont, M. Douay, G. Martinelli, P. Bernage, P. Niay, J. F. Bayon, L. Dong, “Transmission electron microscopy evidence of densification associated to Bragg grating photoimprinted in germanosilicate optical fibers,” Appl. Phys. Lett. 70, 1204–1206 (1997).
[CrossRef]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

1996

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
[CrossRef]

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

B. Poumellec, P. Niay, M. Douay, J. F. Bayon, “The UV-induced refractive index grating in Ge:SiO2 preforms: additional cw experiments and the macroscopic origin of the change in index,” J. Phys. D 29, 1842–1856 (1996).
[CrossRef]

1995

1994

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

T. Erdogan, V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11, 2100–2105 (1994).
[CrossRef]

1993

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, “Photosensitivity in optical fibers,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
[CrossRef]

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, T. Georges, “Thermal hysteresis of Bragg wavelengths of intracore fiber grating,” IEEE Photon. Technol. Lett. 5, 1331–1334 (1993).
[CrossRef]

K. S. Chiang, M. G. Sceats, D. Wong, “Ultraviolet photolytic induced changes in optical fibers: the thermal expansion coefficient,” Opt. Lett. 18, 965–967 (1993).
[CrossRef] [PubMed]

1989

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings by a transverse holographic method,” Opt. Lett. 4, 823–825 (1989).
[CrossRef]

1979

S. Takahashi, S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
[CrossRef]

1973

S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B 7, 3767–3777 (1973).
[CrossRef]

Aslund, M.

Bayon, J. F.

P. Cordier, S. Dupont, M. Douay, G. Martinelli, P. Bernage, P. Niay, J. F. Bayon, L. Dong, “Transmission electron microscopy evidence of densification associated to Bragg grating photoimprinted in germanosilicate optical fibers,” Appl. Phys. Lett. 70, 1204–1206 (1997).
[CrossRef]

B. Leconte, W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge-SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–5930 (1997).
[CrossRef] [PubMed]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

B. Poumellec, P. Niay, M. Douay, J. F. Bayon, “The UV-induced refractive index grating in Ge:SiO2 preforms: additional cw experiments and the macroscopic origin of the change in index,” J. Phys. D 29, 1842–1856 (1996).
[CrossRef]

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, T. Georges, “Thermal hysteresis of Bragg wavelengths of intracore fiber grating,” IEEE Photon. Technol. Lett. 5, 1331–1334 (1993).
[CrossRef]

Bazylenko, M. V.

Bennion, I.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Bernage, P.

P. Cordier, S. Dupont, M. Douay, G. Martinelli, P. Bernage, P. Niay, J. F. Bayon, L. Dong, “Transmission electron microscopy evidence of densification associated to Bragg grating photoimprinted in germanosilicate optical fibers,” Appl. Phys. Lett. 70, 1204–1206 (1997).
[CrossRef]

B. Leconte, W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge-SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–5930 (1997).
[CrossRef] [PubMed]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, T. Georges, “Thermal hysteresis of Bragg wavelengths of intracore fiber grating,” IEEE Photon. Technol. Lett. 5, 1331–1334 (1993).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, “Photosensitivity in optical fibers,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
[CrossRef]

Canning, J.

Chiang, K. S.

Cochet, F.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
[CrossRef]

Cordier, P.

P. Cordier, S. Dupont, M. Douay, G. Martinelli, P. Bernage, P. Niay, J. F. Bayon, L. Dong, “Transmission electron microscopy evidence of densification associated to Bragg grating photoimprinted in germanosilicate optical fibers,” Appl. Phys. Lett. 70, 1204–1206 (1997).
[CrossRef]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

Delevaque, E.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

B. Leconte, W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge-SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–5930 (1997).
[CrossRef] [PubMed]

Dong, L.

P. Cordier, S. Dupont, M. Douay, G. Martinelli, P. Bernage, P. Niay, J. F. Bayon, L. Dong, “Transmission electron microscopy evidence of densification associated to Bragg grating photoimprinted in germanosilicate optical fibers,” Appl. Phys. Lett. 70, 1204–1206 (1997).
[CrossRef]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

Doran, N. J.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Douay, M.

D. Razafimahatratra, P. Niay, M. Douay, B. Poumellec, I. Riant, “Comparison of isochronal and isothermal decays of Bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber,” Appl. Opt. 39, 1924–1933 (2000).
[CrossRef]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

P. Cordier, S. Dupont, M. Douay, G. Martinelli, P. Bernage, P. Niay, J. F. Bayon, L. Dong, “Transmission electron microscopy evidence of densification associated to Bragg grating photoimprinted in germanosilicate optical fibers,” Appl. Phys. Lett. 70, 1204–1206 (1997).
[CrossRef]

B. Leconte, W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge-SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–5930 (1997).
[CrossRef] [PubMed]

B. Poumellec, P. Niay, M. Douay, J. F. Bayon, “The UV-induced refractive index grating in Ge:SiO2 preforms: additional cw experiments and the macroscopic origin of the change in index,” J. Phys. D 29, 1842–1856 (1996).
[CrossRef]

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, T. Georges, “Thermal hysteresis of Bragg wavelengths of intracore fiber grating,” IEEE Photon. Technol. Lett. 5, 1331–1334 (1993).
[CrossRef]

A. Hidayat, Q. Wang, M. Douay, P. Niay, “Influence of strain and temperature on grating reflectivity,” in Conference on Lasers and Electro-Optics in (CLEO/Europe), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), Paper TuK90.

Dupont, S.

P. Cordier, S. Dupont, M. Douay, G. Martinelli, P. Bernage, P. Niay, J. F. Bayon, L. Dong, “Transmission electron microscopy evidence of densification associated to Bragg grating photoimprinted in germanosilicate optical fibers,” Appl. Phys. Lett. 70, 1204–1206 (1997).
[CrossRef]

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

T. Erdogan, V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11, 2100–2105 (1994).
[CrossRef]

Fertein, E.

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, T. Georges, “Thermal hysteresis of Bragg wavelengths of intracore fiber grating,” IEEE Photon. Technol. Lett. 5, 1331–1334 (1993).
[CrossRef]

Fonjallaz, P. Y.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
[CrossRef]

Friebele, E. J.

T. E. Tsai, G. Williams, E. J. Friebele, “Uniform component of index structure induced in Ge-SiO2 fibers by spatially modulated ultraviolet light,” Appl. Phys. Lett. 72, 3242–3245 (1998).

Fujiwara, T.

M. Takahashi, T. Fujiwara, T. Kawachi, A. J. Ikushima, “Thermal equilibrium of Ge-related defects in a GeO2–SiO2 glass,” Appl. Phys. Lett. 72, 1287–1289 (1998).
[CrossRef]

Georges, T.

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, T. Georges, “Thermal hysteresis of Bragg wavelengths of intracore fiber grating,” IEEE Photon. Technol. Lett. 5, 1331–1334 (1993).
[CrossRef]

Glenn, W. H.

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings by a transverse holographic method,” Opt. Lett. 4, 823–825 (1989).
[CrossRef]

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

Hidayat, A.

A. Hidayat, Q. Wang, M. Douay, P. Niay, “Influence of strain and temperature on grating reflectivity,” in Conference on Lasers and Electro-Optics in (CLEO/Europe), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), Paper TuK90.

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, “Photosensitivity in optical fibers,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
[CrossRef]

Ikushima, A. J.

K. Saito, A. J. Ikushima, “Development of a wide-temperature range VUV and UV spectrophotometer and its applications to silica glass,” J. Non Cryst. Sol. 259, 81–86 (1999).
[CrossRef]

M. Takahashi, T. Fujiwara, T. Kawachi, A. J. Ikushima, “Thermal equilibrium of Ge-related defects in a GeO2–SiO2 glass,” Appl. Phys. Lett. 72, 1287–1289 (1998).
[CrossRef]

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, “Photosensitivity in optical fibers,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
[CrossRef]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings, P. L. Kelly, I. Kaminov, G. Agrawal, eds., Optics and Photonics Series (Academic, San Diego, Calif., 1999), Chap. 1.

Kawachi, T.

M. Takahashi, T. Fujiwara, T. Kawachi, A. J. Ikushima, “Thermal equilibrium of Ge-related defects in a GeO2–SiO2 glass,” Appl. Phys. Lett. 72, 1287–1289 (1998).
[CrossRef]

Krug, P. A.

Leconte, B.

B. Leconte, W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge-SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–5930 (1997).
[CrossRef] [PubMed]

B. Leconte, “Contribution à l’étude de la photosensibilité des fibres en silice sous l’effet d’une insolation par un laser à ArF,” Ph.D. dissertation (University of Lille 1, Lille, France, 1998).

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Limberger, H. G.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, “Photosensitivity in optical fibers,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
[CrossRef]

Martinelli, G.

P. Cordier, S. Dupont, M. Douay, G. Martinelli, P. Bernage, P. Niay, J. F. Bayon, L. Dong, “Transmission electron microscopy evidence of densification associated to Bragg grating photoimprinted in germanosilicate optical fibers,” Appl. Phys. Lett. 70, 1204–1206 (1997).
[CrossRef]

Meltz, G.

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings by a transverse holographic method,” Opt. Lett. 4, 823–825 (1989).
[CrossRef]

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

T. Erdogan, V. Mizrahi, “Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11, 2100–2105 (1994).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Morey, W. W.

G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings by a transverse holographic method,” Opt. Lett. 4, 823–825 (1989).
[CrossRef]

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

Moss, D.

Niay, P.

D. Razafimahatratra, P. Niay, M. Douay, B. Poumellec, I. Riant, “Comparison of isochronal and isothermal decays of Bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber,” Appl. Opt. 39, 1924–1933 (2000).
[CrossRef]

P. Cordier, S. Dupont, M. Douay, G. Martinelli, P. Bernage, P. Niay, J. F. Bayon, L. Dong, “Transmission electron microscopy evidence of densification associated to Bragg grating photoimprinted in germanosilicate optical fibers,” Appl. Phys. Lett. 70, 1204–1206 (1997).
[CrossRef]

B. Leconte, W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge-SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–5930 (1997).
[CrossRef] [PubMed]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

B. Poumellec, P. Niay, M. Douay, J. F. Bayon, “The UV-induced refractive index grating in Ge:SiO2 preforms: additional cw experiments and the macroscopic origin of the change in index,” J. Phys. D 29, 1842–1856 (1996).
[CrossRef]

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, T. Georges, “Thermal hysteresis of Bragg wavelengths of intracore fiber grating,” IEEE Photon. Technol. Lett. 5, 1331–1334 (1993).
[CrossRef]

A. Hidayat, Q. Wang, M. Douay, P. Niay, “Influence of strain and temperature on grating reflectivity,” in Conference on Lasers and Electro-Optics in (CLEO/Europe), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), Paper TuK90.

Ouellette, F.

Poignant, H.

B. Leconte, W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge-SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–5930 (1997).
[CrossRef] [PubMed]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

Poumellec, B.

D. Razafimahatratra, P. Niay, M. Douay, B. Poumellec, I. Riant, “Comparison of isochronal and isothermal decays of Bragg gratings written through continuous-wave exposure of an unloaded germanosilicate fiber,” Appl. Opt. 39, 1924–1933 (2000).
[CrossRef]

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
[CrossRef]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

B. Poumellec, P. Niay, M. Douay, J. F. Bayon, “The UV-induced refractive index grating in Ge:SiO2 preforms: additional cw experiments and the macroscopic origin of the change in index,” J. Phys. D 29, 1842–1856 (1996).
[CrossRef]

Razafimahatratra, D.

Riant, I.

Saito, K.

K. Saito, A. J. Ikushima, “Development of a wide-temperature range VUV and UV spectrophotometer and its applications to silica glass,” J. Non Cryst. Sol. 259, 81–86 (1999).
[CrossRef]

Salathé, R. P.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
[CrossRef]

Sceats, M. G.

Shibata, S.

S. Takahashi, S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
[CrossRef]

Sugden, K.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Takahashi, M.

M. Takahashi, T. Fujiwara, T. Kawachi, A. J. Ikushima, “Thermal equilibrium of Ge-related defects in a GeO2–SiO2 glass,” Appl. Phys. Lett. 72, 1287–1289 (1998).
[CrossRef]

Takahashi, S.

S. Takahashi, S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
[CrossRef]

Taunay, T.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

Thorncraft, D. A.

Tsai, T. E.

T. E. Tsai, G. Williams, E. J. Friebele, “Uniform component of index structure induced in Ge-SiO2 fibers by spatially modulated ultraviolet light,” Appl. Phys. Lett. 72, 3242–3245 (1998).

Wang, Q.

A. Hidayat, Q. Wang, M. Douay, P. Niay, “Influence of strain and temperature on grating reflectivity,” in Conference on Lasers and Electro-Optics in (CLEO/Europe), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), Paper TuK90.

Wemple, S. H.

S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B 7, 3767–3777 (1973).
[CrossRef]

Williams, G.

T. E. Tsai, G. Williams, E. J. Friebele, “Uniform component of index structure induced in Ge-SiO2 fibers by spatially modulated ultraviolet light,” Appl. Phys. Lett. 72, 3242–3245 (1998).

Williams, J. A. R.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Wong, D.

K. S. Chiang, M. G. Sceats, D. Wong, “Ultraviolet photolytic induced changes in optical fibers: the thermal expansion coefficient,” Opt. Lett. 18, 965–967 (1993).
[CrossRef] [PubMed]

D. Wong, “Analysis and applications of stresses in optical fibres and sensors,” P.h.D. dissertation (University of New South Wales, Sidney, NSW, Australia, 1990).

Xie, W. X.

B. Leconte, W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, E. Delevaque, H. Poignant, “Analysis of color-center-related contribution to Bragg grating formation in Ge-SiO2 fiber based on a local Kramers–Kronig transformation of excess loss spectra,” Appl. Opt. 36, 5923–5930 (1997).
[CrossRef] [PubMed]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, T. Georges, “Thermal hysteresis of Bragg wavelengths of intracore fiber grating,” IEEE Photon. Technol. Lett. 5, 1331–1334 (1993).
[CrossRef]

Yoffe, G. W.

Zhang, L.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Annu. Rev. Mater. Sci.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, “Photosensitivity in optical fibers,” Annu. Rev. Mater. Sci. 23, 125–157 (1993).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
[CrossRef]

M. Takahashi, T. Fujiwara, T. Kawachi, A. J. Ikushima, “Thermal equilibrium of Ge-related defects in a GeO2–SiO2 glass,” Appl. Phys. Lett. 72, 1287–1289 (1998).
[CrossRef]

P. Cordier, S. Dupont, M. Douay, G. Martinelli, P. Bernage, P. Niay, J. F. Bayon, L. Dong, “Transmission electron microscopy evidence of densification associated to Bragg grating photoimprinted in germanosilicate optical fibers,” Appl. Phys. Lett. 70, 1204–1206 (1997).
[CrossRef]

T. E. Tsai, G. Williams, E. J. Friebele, “Uniform component of index structure induced in Ge-SiO2 fibers by spatially modulated ultraviolet light,” Appl. Phys. Lett. 72, 3242–3245 (1998).

IEEE Photon. Technol. Lett.

M. Douay, E. Fertein, W. X. Xie, P. Bernage, P. Niay, J. F. Bayon, T. Georges, “Thermal hysteresis of Bragg wavelengths of intracore fiber grating,” IEEE Photon. Technol. Lett. 5, 1331–1334 (1993).
[CrossRef]

J. Appl. Phys.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fiber Bragg grating,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

J. Lightwave Technol.

K. O. Hill, P. St, J. Russell, G. Meltz, A. M. Vengsarkar, eds., special issue on fiber gratings, photosensitivity, and poling,” J. Lightwave Technol. 15, 1261–1503 (1997).

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, E. Delevaque, “Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,” J. Lightwave Technol. 15, 1329–1342 (1997).
[CrossRef]

J. Non Cryst. Sol.

K. Saito, A. J. Ikushima, “Development of a wide-temperature range VUV and UV spectrophotometer and its applications to silica glass,” J. Non Cryst. Sol. 259, 81–86 (1999).
[CrossRef]

J. Non-Cryst. Solids

S. Takahashi, S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
[CrossRef]

B. Poumellec, “Links between writing and erasure (or stability) of Bragg gratings in disordered media,” J. Non-Cryst. Solids 239, 108–115 (1998).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

B. Poumellec, P. Niay, M. Douay, J. F. Bayon, “The UV-induced refractive index grating in Ge:SiO2 preforms: additional cw experiments and the macroscopic origin of the change in index,” J. Phys. D 29, 1842–1856 (1996).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Phys. Rev. B

S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B 7, 3767–3777 (1973).
[CrossRef]

Other

B. Leconte, “Contribution à l’étude de la photosensibilité des fibres en silice sous l’effet d’une insolation par un laser à ArF,” Ph.D. dissertation (University of Lille 1, Lille, France, 1998).

D. Wong, “Analysis and applications of stresses in optical fibres and sensors,” P.h.D. dissertation (University of New South Wales, Sidney, NSW, Australia, 1990).

W. W. Morey, G. Meltz, W. H. Glenn, “Fiber optic Bragg grating sensors,” in Fiber Optic and Laser Sensors VII, R. P. DePaula, E. Udd, eds., Proc. SPIE1169, 98–107 (1989).
[CrossRef]

A. Hidayat, Q. Wang, M. Douay, P. Niay, “Influence of strain and temperature on grating reflectivity,” in Conference on Lasers and Electro-Optics in (CLEO/Europe), 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), Paper TuK90.

R. Kashyap, Fiber Bragg Gratings, P. L. Kelly, I. Kaminov, G. Agrawal, eds., Optics and Photonics Series (Academic, San Diego, Calif., 1999), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Reversible evolution of the reflectivity of 5-mm-long gratings as a function of temperature. The gratings were written in a H2-loaded (filled circles) or in an unloaded (open symbols) HD487 fiber.

Fig. 2
Fig. 2

Transmission spectra of a preannealed type I grating written in nonhydrogenated fiber 1. The grating length is 5 mm.

Fig. 3
Fig. 3

(a) Portions of a transmission spectrum for a preannealed type I grating written in nonhydrogenated fiber 3, showing three temperatures at which the spectra were recorded. (b) Portions of a transmission spectrum for a preannealed type I grating written in hydrogenated fiber 3, showing the two temperatures (K) at which the spectra were recorded.

Fig. 4
Fig. 4

Portions of the transmission spectrum for a preannealed type I grating written in fiber 2.

Fig. 5
Fig. 5

Reversible temperature-induced changes in the amplitude of refractive-index modulation for preannealed gratings written in nonhydrogenated fiber 2. Filled circles and filled squares show amplitudes of gratings, as marked. The references are the index modulations at 296 K [Δn mod (296 K)] as shown. The dashed and solid curves describe fits of the data to either a linear or a quadratic expression of T (see text).

Fig. 6
Fig. 6

Reversible temperature-induced reflectivity changes for Bragg gratings written in nonhydrogenated or hydrogenated fiber 1. The solid curves are linear regressions that fit the data (296 K < T < 573 K).

Fig. 7
Fig. 7

Reversible temperature-induced Bragg wavelength shifts experienced by Bragg gratings written in nonhydrogenated fiber 2. The solid curves are linear regressions that fit the data closely in the temperature range 296 K < T < 573 K.

Fig. 8
Fig. 8

Reversible evolutions of the refractive-index modulations as a function of the temperature rise above room temperature for type I gratings written in nonhydrogenated fiber 1. The parameter of the plots is modulation at room temperature. Solid curves, linear regressions that fit the data within the temperature range 0 K < ΔT < 300 K, 296 K < T < 573 K.

Fig. 9
Fig. 9

Slope of the linear plots in Fig. 8 as a function of refractive-index modulation at room temperature. The ranges of validity of this plot are 296 K < T < 573 K and Δn mod < 1.4 × 10-4.

Tables (3)

Tables Icon

Table 1 Fiber Characteristics and Summary of the Experimental Conditions

Tables Icon

Table 2 Standard Deviations of the R and λ B Measurements Owing to Random Changes in the State of Polarization at the Grating

Tables Icon

Table 3 Summary of the Main Experimental Results

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

λB=2neffΛ,
RλB=tanh2πΔnmodλB ηLG.
ΔnmodT=Δnmod296 K1+γT-296,296 K<T<573 K,  Δnmod1.6×10-4.
ξUV=ξ0+γΔn,  296 K < T < 573 K.
nmeanT=n1296 K+ξ0T-296+γΔnz×T-296, 296 K<T<573 K.
A=δαΔT=εzz=εrr=εθθ,
δΔnmod=n2-1n2+24n A-n34 Ap11+p12=0.48A,δΔnmean=n2-1n2+24n A-n34 Ap12=0.574A
α=5.6+1.04×ρ1×10-7 °C-1.
ΔλB/λB=α+ξΔT,

Metrics