Abstract

High-power lasers can be used to induce ionization of gases and thereby enable rapid triggering of electrical discharge devices, potentially faster than any devices based on mechanical or solid-state switching. With diffractive optical elements (DOEs) the laser light can conveniently be directed to positions within the gas so that an electrical discharge between two high-voltage electrodes is triggered reliably and rapidly. Here we report on two different types of DOE used for creating an electrical discharge in pure argon for potential high-voltage applications. One is the diffractive equivalent of a conventional axicon that yields an extended, and continuous, high-intensity focal region between the electrodes. The other is a multiple-focal-distance kinoform—a DOE that is designed to produce a linear array of 20 discrete foci, with high peak intensities, between the electrodes. We show that DOEs enable efficient, rapid switching and may provide increased flexibility in the design of novel electrode configurations.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Tomlinson, E. K. Damon, H. T. Busher, “The breakdown of noble and atmospheric gases by ruby and neodymium laser pulses,” in Physics of Quantum Electronics, P. L. Kelley, B. Lax, P. E. Tannenwald, eds. (McGraw-Hill, New York, 1965), p. 520.
  2. A. Sunesson, P. Bårmann, S. Kröll, L. Walfridsson, “Laser triggering of electric breakdown in liquids,” IEEE Trans. Dielectr. Electr. Insul. 1, 680–691 (1994).
    [CrossRef]
  3. M. Yu. Marin, V. I. Pilskii, L. Ya. Polonskii, L. N. Pyatnitskii, A. V. Reingold, “Laser initiation of discharges in weak electric fields,” Sov. Phys. Tech. Phys. 32, 898–900 (1987).
  4. J. Isberg, P. Skytt, A. Sunesson, M. Ekberg, M. Bergkvist, A. Gustafsson, H. Bernhoff, “A laser triggered plasma switch,” in Proceedings of the 12th IEEE International Pulsed Power Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1999), Vol. 1, pp. 138–141.
  5. G. Scott, N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
    [CrossRef]
  6. O. Bryngdahl, “Computer-generated holograms as generalized optical components,” Opt. Eng. 14, 426–435 (1975).
  7. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
    [CrossRef]
  8. J. Bengtsson, “Design of fan-out kinoforms in the entire scalar diffraction regime with an optimal-rotation-angle method,” Appl. Opt. 36, 8435–8444 (1997).
    [CrossRef]
  9. M. Larsson, M. Ekberg, F. Nikolajeff, S. Hård, “Successive development optimization of resist kinoforms manufactured with direct-writing, electron-beam lithography,” Appl. Opt. 33, 1176–1179 (1994).
    [CrossRef] [PubMed]
  10. M. Ekberg, M. Larsson, A. Bolle, S. Hård, “Nd:YAG laser machining with multilevel resist kinoforms,” Appl. Opt. 30, 3604 (1991).
    [CrossRef] [PubMed]
  11. E. Kuffel, W. S. Zaengl, High Voltage Engineering (Pergamon, New York, 1984).
  12. G.-Z. Yang, B.-Y. Gu, O. K. Ersoy, “Iterative optimization approach for designing an axicon with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 13, 97–103 (1996).
    [CrossRef]

1997 (1)

1996 (1)

1994 (2)

M. Larsson, M. Ekberg, F. Nikolajeff, S. Hård, “Successive development optimization of resist kinoforms manufactured with direct-writing, electron-beam lithography,” Appl. Opt. 33, 1176–1179 (1994).
[CrossRef] [PubMed]

A. Sunesson, P. Bårmann, S. Kröll, L. Walfridsson, “Laser triggering of electric breakdown in liquids,” IEEE Trans. Dielectr. Electr. Insul. 1, 680–691 (1994).
[CrossRef]

1992 (1)

G. Scott, N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[CrossRef]

1991 (1)

1987 (1)

M. Yu. Marin, V. I. Pilskii, L. Ya. Polonskii, L. N. Pyatnitskii, A. V. Reingold, “Laser initiation of discharges in weak electric fields,” Sov. Phys. Tech. Phys. 32, 898–900 (1987).

1975 (1)

O. Bryngdahl, “Computer-generated holograms as generalized optical components,” Opt. Eng. 14, 426–435 (1975).

1969 (1)

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Bårmann, P.

A. Sunesson, P. Bårmann, S. Kröll, L. Walfridsson, “Laser triggering of electric breakdown in liquids,” IEEE Trans. Dielectr. Electr. Insul. 1, 680–691 (1994).
[CrossRef]

Bengtsson, J.

Bergkvist, M.

J. Isberg, P. Skytt, A. Sunesson, M. Ekberg, M. Bergkvist, A. Gustafsson, H. Bernhoff, “A laser triggered plasma switch,” in Proceedings of the 12th IEEE International Pulsed Power Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1999), Vol. 1, pp. 138–141.

Bernhoff, H.

J. Isberg, P. Skytt, A. Sunesson, M. Ekberg, M. Bergkvist, A. Gustafsson, H. Bernhoff, “A laser triggered plasma switch,” in Proceedings of the 12th IEEE International Pulsed Power Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1999), Vol. 1, pp. 138–141.

Bolle, A.

Bryngdahl, O.

O. Bryngdahl, “Computer-generated holograms as generalized optical components,” Opt. Eng. 14, 426–435 (1975).

Busher, H. T.

R. G. Tomlinson, E. K. Damon, H. T. Busher, “The breakdown of noble and atmospheric gases by ruby and neodymium laser pulses,” in Physics of Quantum Electronics, P. L. Kelley, B. Lax, P. E. Tannenwald, eds. (McGraw-Hill, New York, 1965), p. 520.

Damon, E. K.

R. G. Tomlinson, E. K. Damon, H. T. Busher, “The breakdown of noble and atmospheric gases by ruby and neodymium laser pulses,” in Physics of Quantum Electronics, P. L. Kelley, B. Lax, P. E. Tannenwald, eds. (McGraw-Hill, New York, 1965), p. 520.

Ekberg, M.

M. Larsson, M. Ekberg, F. Nikolajeff, S. Hård, “Successive development optimization of resist kinoforms manufactured with direct-writing, electron-beam lithography,” Appl. Opt. 33, 1176–1179 (1994).
[CrossRef] [PubMed]

M. Ekberg, M. Larsson, A. Bolle, S. Hård, “Nd:YAG laser machining with multilevel resist kinoforms,” Appl. Opt. 30, 3604 (1991).
[CrossRef] [PubMed]

J. Isberg, P. Skytt, A. Sunesson, M. Ekberg, M. Bergkvist, A. Gustafsson, H. Bernhoff, “A laser triggered plasma switch,” in Proceedings of the 12th IEEE International Pulsed Power Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1999), Vol. 1, pp. 138–141.

Ersoy, O. K.

Gu, B.-Y.

Gustafsson, A.

J. Isberg, P. Skytt, A. Sunesson, M. Ekberg, M. Bergkvist, A. Gustafsson, H. Bernhoff, “A laser triggered plasma switch,” in Proceedings of the 12th IEEE International Pulsed Power Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1999), Vol. 1, pp. 138–141.

Hård, S.

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Isberg, J.

J. Isberg, P. Skytt, A. Sunesson, M. Ekberg, M. Bergkvist, A. Gustafsson, H. Bernhoff, “A laser triggered plasma switch,” in Proceedings of the 12th IEEE International Pulsed Power Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1999), Vol. 1, pp. 138–141.

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Kröll, S.

A. Sunesson, P. Bårmann, S. Kröll, L. Walfridsson, “Laser triggering of electric breakdown in liquids,” IEEE Trans. Dielectr. Electr. Insul. 1, 680–691 (1994).
[CrossRef]

Kuffel, E.

E. Kuffel, W. S. Zaengl, High Voltage Engineering (Pergamon, New York, 1984).

Larsson, M.

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

Marin, M. Yu.

M. Yu. Marin, V. I. Pilskii, L. Ya. Polonskii, L. N. Pyatnitskii, A. V. Reingold, “Laser initiation of discharges in weak electric fields,” Sov. Phys. Tech. Phys. 32, 898–900 (1987).

McArdle, N.

G. Scott, N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[CrossRef]

Nikolajeff, F.

Pilskii, V. I.

M. Yu. Marin, V. I. Pilskii, L. Ya. Polonskii, L. N. Pyatnitskii, A. V. Reingold, “Laser initiation of discharges in weak electric fields,” Sov. Phys. Tech. Phys. 32, 898–900 (1987).

Polonskii, L. Ya.

M. Yu. Marin, V. I. Pilskii, L. Ya. Polonskii, L. N. Pyatnitskii, A. V. Reingold, “Laser initiation of discharges in weak electric fields,” Sov. Phys. Tech. Phys. 32, 898–900 (1987).

Pyatnitskii, L. N.

M. Yu. Marin, V. I. Pilskii, L. Ya. Polonskii, L. N. Pyatnitskii, A. V. Reingold, “Laser initiation of discharges in weak electric fields,” Sov. Phys. Tech. Phys. 32, 898–900 (1987).

Reingold, A. V.

M. Yu. Marin, V. I. Pilskii, L. Ya. Polonskii, L. N. Pyatnitskii, A. V. Reingold, “Laser initiation of discharges in weak electric fields,” Sov. Phys. Tech. Phys. 32, 898–900 (1987).

Scott, G.

G. Scott, N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[CrossRef]

Skytt, P.

J. Isberg, P. Skytt, A. Sunesson, M. Ekberg, M. Bergkvist, A. Gustafsson, H. Bernhoff, “A laser triggered plasma switch,” in Proceedings of the 12th IEEE International Pulsed Power Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1999), Vol. 1, pp. 138–141.

Sunesson, A.

A. Sunesson, P. Bårmann, S. Kröll, L. Walfridsson, “Laser triggering of electric breakdown in liquids,” IEEE Trans. Dielectr. Electr. Insul. 1, 680–691 (1994).
[CrossRef]

J. Isberg, P. Skytt, A. Sunesson, M. Ekberg, M. Bergkvist, A. Gustafsson, H. Bernhoff, “A laser triggered plasma switch,” in Proceedings of the 12th IEEE International Pulsed Power Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1999), Vol. 1, pp. 138–141.

Tomlinson, R. G.

R. G. Tomlinson, E. K. Damon, H. T. Busher, “The breakdown of noble and atmospheric gases by ruby and neodymium laser pulses,” in Physics of Quantum Electronics, P. L. Kelley, B. Lax, P. E. Tannenwald, eds. (McGraw-Hill, New York, 1965), p. 520.

Walfridsson, L.

A. Sunesson, P. Bårmann, S. Kröll, L. Walfridsson, “Laser triggering of electric breakdown in liquids,” IEEE Trans. Dielectr. Electr. Insul. 1, 680–691 (1994).
[CrossRef]

Yang, G.-Z.

Zaengl, W. S.

E. Kuffel, W. S. Zaengl, High Voltage Engineering (Pergamon, New York, 1984).

Appl. Opt. (3)

IBM J. Res. Dev. (1)

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[CrossRef]

IEEE Trans. Dielectr. Electr. Insul. (1)

A. Sunesson, P. Bårmann, S. Kröll, L. Walfridsson, “Laser triggering of electric breakdown in liquids,” IEEE Trans. Dielectr. Electr. Insul. 1, 680–691 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (2)

G. Scott, N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[CrossRef]

O. Bryngdahl, “Computer-generated holograms as generalized optical components,” Opt. Eng. 14, 426–435 (1975).

Sov. Phys. Tech. Phys. (1)

M. Yu. Marin, V. I. Pilskii, L. Ya. Polonskii, L. N. Pyatnitskii, A. V. Reingold, “Laser initiation of discharges in weak electric fields,” Sov. Phys. Tech. Phys. 32, 898–900 (1987).

Other (3)

J. Isberg, P. Skytt, A. Sunesson, M. Ekberg, M. Bergkvist, A. Gustafsson, H. Bernhoff, “A laser triggered plasma switch,” in Proceedings of the 12th IEEE International Pulsed Power Conference, Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1999), Vol. 1, pp. 138–141.

E. Kuffel, W. S. Zaengl, High Voltage Engineering (Pergamon, New York, 1984).

R. G. Tomlinson, E. K. Damon, H. T. Busher, “The breakdown of noble and atmospheric gases by ruby and neodymium laser pulses,” in Physics of Quantum Electronics, P. L. Kelley, B. Lax, P. E. Tannenwald, eds. (McGraw-Hill, New York, 1965), p. 520.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Protection closing switch using laser-triggered interelectrode discharge.

Fig. 2
Fig. 2

Elongated focal region from an axicon.

Fig. 3
Fig. 3

Simulated intensity distribution from the diffractive axicon for He–Ne-laser illumination: (a) profile along the optical axis, (b) radial and longitudinal distribution. The dashed curves show the 1/e 2 beam diameter.

Fig. 4
Fig. 4

Designed relief map for the central portion of the multifocus DOE.

Fig. 5
Fig. 5

Simulated intensity distribution from the multifocus DOE for He–Ne-laser illumination: (a) profile along the optical axis, (b) radial and longitudinal distribution. The dashed curves show the 1/e 2 beam diameter.

Fig. 6
Fig. 6

Experimental setup for the determination of the intensity distribution in the focal region of the DOEs.

Fig. 7
Fig. 7

Measured intensity distribution along the optical axis for He–Ne-laser illumination from (a) the diffractive linear axicon and (b) the multifocal DOE.

Fig. 8
Fig. 8

Plasma channels generated along the elongated focal regions of the two types of diffractive element: (a) the continuous plasma channel from the diffractive linear axicon, (b) the discrete plasma structure generated by the multifocal DOE.

Fig. 9
Fig. 9

Laser-triggered electrical breakdown, with the laser energy focused with the diffractive axicon, resulting in an electrical short circuit between the two electrodes. Note that the arc channel is well confined to the focal region.

Fig. 10
Fig. 10

Electrical switching performance of a laser-triggered high-voltage switch with the linear diffractive axicon: (a) probability for successful switching versus electrode voltage from a number of test series, (b) measured triggering delay time between a fired laser pulse and a fully developed breakdown as a function of the electrode voltage.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

zfoc=Rtan αRΛλ,
2δr2 λz2rΛ,

Metrics