Abstract

Excitation scans of the MgO B 1Σ+A 1Π transition were made in a seeded acetylene–air flame. The combustion of magnesium in oxygen and carbon dioxide is well known and is of significant interest for fire safety, solid propellant applications, and recently for use as an in situ resource propellant for planetary exploration of Mars. This spectroscopic study expands the available data on this electronic transition, particularly data at high rotational states that are lacking in the literature. Rotational parameters of the v = 0, 1, and 2 states of B 1Σ+ are derived.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Woolridge, “Gas-phase combustion synthesis of particles,” Prog. Energy Combust. Sci. 24, 63–87 (1998).
    [CrossRef]
  2. E. L. Dreizin, “Phase changes in metal combustion,” Prog. Energy Combust. Sci. 26, 57–78 (2000).
    [CrossRef]
  3. A. Abbud-Madrid, M. C. Branch, J. W. Daily, “Ignition and combustion of bulk titanium and magnesium at normal and reduced gravity,” in Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1929–1936.
    [CrossRef]
  4. E. Ya. Shafirovich, A. A. Shiryaev, U. I. Goldshleger, “Magnesium and carbon dioxide: a rocket propellant for Mars missions,” J. Propul. Power 9(2), 197–203 (1993).
    [CrossRef]
  5. P. C. Manhati, “The band spectra of MgO, CaO and SrO,” Phys. Rev. 42, 609–621 (1932).
    [CrossRef]
  6. A. Lagerqvist, U. Uhler, “The red and green bands of magnesium oxide,” Ark. Fys. 1, 459–475 (1949).
  7. P. C. F. Ip, “Laser spectroscopy and dynamics of magnesium + nitrous oxide flame systems,” Ph.D. dissertation (Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass., 1983).
  8. A. Lagerqvist, “The green bands of magnesium oxide,” Ark. Mat. Astron. Fys. 29 A (25), 1–14 (1943).
  9. L. Brewer, S. Trajmar, R. A. Berg, “Analysis of the ultraviolet system of magnesium oxide,” Astrophys. J. 135, 955–962 (1962).
    [CrossRef]
  10. S. Trajmar, G. E. Ewing, “The near ultraviolet bands of MgO: analysis of the D1Δ–A1Π and D1Δ–C1Π systems,” Astrophys. J. 142, 77–83 (1965).
    [CrossRef]
  11. Y. Azuma, T. R. Dyke, G. K. Gerke, T. Steimle, “Laser-induced fluorescence and microwave-optical double-resonance study of the B1Σ+–X1Σ+ system of magnesium monoxide,” J. Mol. Spectrosc. 108, 137–142 (1984).
    [CrossRef]
  12. B. Bourguignon, J. Rostas, “The d3Δi–a3Πi and d3Δ2–A1Π systems of the MgO molecule,” J. Mol. Spectrosc. 146, 437–454 (1991).
    [CrossRef]
  13. P. C. F. Ip, K. J. Cross, R. W. Field, J. Rostas, B. Bourguignon, J. McCombie, “The B1Σ+–a3Πi and D1Δ–a3Π1 intercombination systems of the MgO molecule,” J. Mol. Spectrosc. 146, 409–436 (1991).
    [CrossRef]
  14. A. Civis̆, H. Hedderich, C. Blom, “The infrared spectrum of magnesium oxide: a diode laser study using the discharge-enhanced reaction between hot magnesium vapor and N2O,” Chem. Phys. Lett. 176, 489–494 (1991).
    [CrossRef]
  15. T. Törring, J. Hoeft, “The microwave absorption spectrum of MgO,” Chem. Phys. Lett. 126, 477–480 (1986).
    [CrossRef]
  16. E. Kagi, T. Hirano, S. Takano, K. Kawaguchi, “Fourier transform infrared spectroscopy of the A1Π–X1Σ+ system of MgO,” J. Mol. Spectrosc. 168, 109–125 (1994).
    [CrossRef]
  17. P. Mürtz, H. Thümmel, C. Pfelzer, W. Urban, “New bands of the MgO A1Π–X1Σ+ and a3Π0,1–X1Σ+ systems by Faraday laser magnetic resonance spectroscopy,” Mol. Phys. 86, 513–534 (1995).
  18. T. Ikeda, N. B. Wong, D. O. Harris, R. W. Field, “Argon ion and dye laser induced MgO B1Σ+–X1Σ+ and B1Σ+–A1Π photoluminescence spectra,” J. Mol. Spectrosc. 68, 452–487 (1977).
    [CrossRef]
  19. P. Mürtz, S. Richter, C. Pfelzer, H. Thümmel, W. Urban, “Faraday LMR spectroscopy of the MgO A1Π–X1Σ+ (0–2) and a3Π0,1–X1Σ+ (0-1) bands,” Mol. Phys. 82, 989–1007 (1994).
    [CrossRef]
  20. R. W. Nicholls, “Franck-Condon factors to high vibrational quantum numbers II: SiO, MgO, SrO, ALO, VO, NO,” J. Res. Natl. Bur. Stand. Sect. A 66, 227–231 (1962).
    [CrossRef]
  21. L. Pasternack, A. P. Baronavski, J. R. McDonald, “Application of saturation spectroscopy for measurement of atomic Na and MgO in acetylene flames,” J. Chem. Phys. 69, 4830–4837 (1978).
    [CrossRef]
  22. R. J. Le Roy, DSParFit 1.0: A Computer Program for Fitting Multi-Isotopomer Diatomic Molecule Spectra, (University of Waterloo, Waterloo, Canada, 2000).

2000 (1)

E. L. Dreizin, “Phase changes in metal combustion,” Prog. Energy Combust. Sci. 26, 57–78 (2000).
[CrossRef]

1998 (1)

M. S. Woolridge, “Gas-phase combustion synthesis of particles,” Prog. Energy Combust. Sci. 24, 63–87 (1998).
[CrossRef]

1995 (1)

P. Mürtz, H. Thümmel, C. Pfelzer, W. Urban, “New bands of the MgO A1Π–X1Σ+ and a3Π0,1–X1Σ+ systems by Faraday laser magnetic resonance spectroscopy,” Mol. Phys. 86, 513–534 (1995).

1994 (2)

P. Mürtz, S. Richter, C. Pfelzer, H. Thümmel, W. Urban, “Faraday LMR spectroscopy of the MgO A1Π–X1Σ+ (0–2) and a3Π0,1–X1Σ+ (0-1) bands,” Mol. Phys. 82, 989–1007 (1994).
[CrossRef]

E. Kagi, T. Hirano, S. Takano, K. Kawaguchi, “Fourier transform infrared spectroscopy of the A1Π–X1Σ+ system of MgO,” J. Mol. Spectrosc. 168, 109–125 (1994).
[CrossRef]

1993 (1)

E. Ya. Shafirovich, A. A. Shiryaev, U. I. Goldshleger, “Magnesium and carbon dioxide: a rocket propellant for Mars missions,” J. Propul. Power 9(2), 197–203 (1993).
[CrossRef]

1991 (3)

B. Bourguignon, J. Rostas, “The d3Δi–a3Πi and d3Δ2–A1Π systems of the MgO molecule,” J. Mol. Spectrosc. 146, 437–454 (1991).
[CrossRef]

P. C. F. Ip, K. J. Cross, R. W. Field, J. Rostas, B. Bourguignon, J. McCombie, “The B1Σ+–a3Πi and D1Δ–a3Π1 intercombination systems of the MgO molecule,” J. Mol. Spectrosc. 146, 409–436 (1991).
[CrossRef]

A. Civis̆, H. Hedderich, C. Blom, “The infrared spectrum of magnesium oxide: a diode laser study using the discharge-enhanced reaction between hot magnesium vapor and N2O,” Chem. Phys. Lett. 176, 489–494 (1991).
[CrossRef]

1986 (1)

T. Törring, J. Hoeft, “The microwave absorption spectrum of MgO,” Chem. Phys. Lett. 126, 477–480 (1986).
[CrossRef]

1984 (1)

Y. Azuma, T. R. Dyke, G. K. Gerke, T. Steimle, “Laser-induced fluorescence and microwave-optical double-resonance study of the B1Σ+–X1Σ+ system of magnesium monoxide,” J. Mol. Spectrosc. 108, 137–142 (1984).
[CrossRef]

1978 (1)

L. Pasternack, A. P. Baronavski, J. R. McDonald, “Application of saturation spectroscopy for measurement of atomic Na and MgO in acetylene flames,” J. Chem. Phys. 69, 4830–4837 (1978).
[CrossRef]

1977 (1)

T. Ikeda, N. B. Wong, D. O. Harris, R. W. Field, “Argon ion and dye laser induced MgO B1Σ+–X1Σ+ and B1Σ+–A1Π photoluminescence spectra,” J. Mol. Spectrosc. 68, 452–487 (1977).
[CrossRef]

1965 (1)

S. Trajmar, G. E. Ewing, “The near ultraviolet bands of MgO: analysis of the D1Δ–A1Π and D1Δ–C1Π systems,” Astrophys. J. 142, 77–83 (1965).
[CrossRef]

1962 (2)

L. Brewer, S. Trajmar, R. A. Berg, “Analysis of the ultraviolet system of magnesium oxide,” Astrophys. J. 135, 955–962 (1962).
[CrossRef]

R. W. Nicholls, “Franck-Condon factors to high vibrational quantum numbers II: SiO, MgO, SrO, ALO, VO, NO,” J. Res. Natl. Bur. Stand. Sect. A 66, 227–231 (1962).
[CrossRef]

1949 (1)

A. Lagerqvist, U. Uhler, “The red and green bands of magnesium oxide,” Ark. Fys. 1, 459–475 (1949).

1943 (1)

A. Lagerqvist, “The green bands of magnesium oxide,” Ark. Mat. Astron. Fys. 29 A (25), 1–14 (1943).

1932 (1)

P. C. Manhati, “The band spectra of MgO, CaO and SrO,” Phys. Rev. 42, 609–621 (1932).
[CrossRef]

Abbud-Madrid, A.

A. Abbud-Madrid, M. C. Branch, J. W. Daily, “Ignition and combustion of bulk titanium and magnesium at normal and reduced gravity,” in Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1929–1936.
[CrossRef]

Azuma, Y.

Y. Azuma, T. R. Dyke, G. K. Gerke, T. Steimle, “Laser-induced fluorescence and microwave-optical double-resonance study of the B1Σ+–X1Σ+ system of magnesium monoxide,” J. Mol. Spectrosc. 108, 137–142 (1984).
[CrossRef]

Baronavski, A. P.

L. Pasternack, A. P. Baronavski, J. R. McDonald, “Application of saturation spectroscopy for measurement of atomic Na and MgO in acetylene flames,” J. Chem. Phys. 69, 4830–4837 (1978).
[CrossRef]

Berg, R. A.

L. Brewer, S. Trajmar, R. A. Berg, “Analysis of the ultraviolet system of magnesium oxide,” Astrophys. J. 135, 955–962 (1962).
[CrossRef]

Blom, C.

A. Civis̆, H. Hedderich, C. Blom, “The infrared spectrum of magnesium oxide: a diode laser study using the discharge-enhanced reaction between hot magnesium vapor and N2O,” Chem. Phys. Lett. 176, 489–494 (1991).
[CrossRef]

Bourguignon, B.

B. Bourguignon, J. Rostas, “The d3Δi–a3Πi and d3Δ2–A1Π systems of the MgO molecule,” J. Mol. Spectrosc. 146, 437–454 (1991).
[CrossRef]

P. C. F. Ip, K. J. Cross, R. W. Field, J. Rostas, B. Bourguignon, J. McCombie, “The B1Σ+–a3Πi and D1Δ–a3Π1 intercombination systems of the MgO molecule,” J. Mol. Spectrosc. 146, 409–436 (1991).
[CrossRef]

Branch, M. C.

A. Abbud-Madrid, M. C. Branch, J. W. Daily, “Ignition and combustion of bulk titanium and magnesium at normal and reduced gravity,” in Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1929–1936.
[CrossRef]

Brewer, L.

L. Brewer, S. Trajmar, R. A. Berg, “Analysis of the ultraviolet system of magnesium oxide,” Astrophys. J. 135, 955–962 (1962).
[CrossRef]

Civis?, A.

A. Civis̆, H. Hedderich, C. Blom, “The infrared spectrum of magnesium oxide: a diode laser study using the discharge-enhanced reaction between hot magnesium vapor and N2O,” Chem. Phys. Lett. 176, 489–494 (1991).
[CrossRef]

Cross, K. J.

P. C. F. Ip, K. J. Cross, R. W. Field, J. Rostas, B. Bourguignon, J. McCombie, “The B1Σ+–a3Πi and D1Δ–a3Π1 intercombination systems of the MgO molecule,” J. Mol. Spectrosc. 146, 409–436 (1991).
[CrossRef]

Daily, J. W.

A. Abbud-Madrid, M. C. Branch, J. W. Daily, “Ignition and combustion of bulk titanium and magnesium at normal and reduced gravity,” in Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1929–1936.
[CrossRef]

Dreizin, E. L.

E. L. Dreizin, “Phase changes in metal combustion,” Prog. Energy Combust. Sci. 26, 57–78 (2000).
[CrossRef]

Dyke, T. R.

Y. Azuma, T. R. Dyke, G. K. Gerke, T. Steimle, “Laser-induced fluorescence and microwave-optical double-resonance study of the B1Σ+–X1Σ+ system of magnesium monoxide,” J. Mol. Spectrosc. 108, 137–142 (1984).
[CrossRef]

Ewing, G. E.

S. Trajmar, G. E. Ewing, “The near ultraviolet bands of MgO: analysis of the D1Δ–A1Π and D1Δ–C1Π systems,” Astrophys. J. 142, 77–83 (1965).
[CrossRef]

Field, R. W.

P. C. F. Ip, K. J. Cross, R. W. Field, J. Rostas, B. Bourguignon, J. McCombie, “The B1Σ+–a3Πi and D1Δ–a3Π1 intercombination systems of the MgO molecule,” J. Mol. Spectrosc. 146, 409–436 (1991).
[CrossRef]

T. Ikeda, N. B. Wong, D. O. Harris, R. W. Field, “Argon ion and dye laser induced MgO B1Σ+–X1Σ+ and B1Σ+–A1Π photoluminescence spectra,” J. Mol. Spectrosc. 68, 452–487 (1977).
[CrossRef]

Gerke, G. K.

Y. Azuma, T. R. Dyke, G. K. Gerke, T. Steimle, “Laser-induced fluorescence and microwave-optical double-resonance study of the B1Σ+–X1Σ+ system of magnesium monoxide,” J. Mol. Spectrosc. 108, 137–142 (1984).
[CrossRef]

Goldshleger, U. I.

E. Ya. Shafirovich, A. A. Shiryaev, U. I. Goldshleger, “Magnesium and carbon dioxide: a rocket propellant for Mars missions,” J. Propul. Power 9(2), 197–203 (1993).
[CrossRef]

Harris, D. O.

T. Ikeda, N. B. Wong, D. O. Harris, R. W. Field, “Argon ion and dye laser induced MgO B1Σ+–X1Σ+ and B1Σ+–A1Π photoluminescence spectra,” J. Mol. Spectrosc. 68, 452–487 (1977).
[CrossRef]

Hedderich, H.

A. Civis̆, H. Hedderich, C. Blom, “The infrared spectrum of magnesium oxide: a diode laser study using the discharge-enhanced reaction between hot magnesium vapor and N2O,” Chem. Phys. Lett. 176, 489–494 (1991).
[CrossRef]

Hirano, T.

E. Kagi, T. Hirano, S. Takano, K. Kawaguchi, “Fourier transform infrared spectroscopy of the A1Π–X1Σ+ system of MgO,” J. Mol. Spectrosc. 168, 109–125 (1994).
[CrossRef]

Hoeft, J.

T. Törring, J. Hoeft, “The microwave absorption spectrum of MgO,” Chem. Phys. Lett. 126, 477–480 (1986).
[CrossRef]

Ikeda, T.

T. Ikeda, N. B. Wong, D. O. Harris, R. W. Field, “Argon ion and dye laser induced MgO B1Σ+–X1Σ+ and B1Σ+–A1Π photoluminescence spectra,” J. Mol. Spectrosc. 68, 452–487 (1977).
[CrossRef]

Ip, P. C. F.

P. C. F. Ip, K. J. Cross, R. W. Field, J. Rostas, B. Bourguignon, J. McCombie, “The B1Σ+–a3Πi and D1Δ–a3Π1 intercombination systems of the MgO molecule,” J. Mol. Spectrosc. 146, 409–436 (1991).
[CrossRef]

P. C. F. Ip, “Laser spectroscopy and dynamics of magnesium + nitrous oxide flame systems,” Ph.D. dissertation (Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass., 1983).

Kagi, E.

E. Kagi, T. Hirano, S. Takano, K. Kawaguchi, “Fourier transform infrared spectroscopy of the A1Π–X1Σ+ system of MgO,” J. Mol. Spectrosc. 168, 109–125 (1994).
[CrossRef]

Kawaguchi, K.

E. Kagi, T. Hirano, S. Takano, K. Kawaguchi, “Fourier transform infrared spectroscopy of the A1Π–X1Σ+ system of MgO,” J. Mol. Spectrosc. 168, 109–125 (1994).
[CrossRef]

Lagerqvist, A.

A. Lagerqvist, U. Uhler, “The red and green bands of magnesium oxide,” Ark. Fys. 1, 459–475 (1949).

A. Lagerqvist, “The green bands of magnesium oxide,” Ark. Mat. Astron. Fys. 29 A (25), 1–14 (1943).

Le Roy, R. J.

R. J. Le Roy, DSParFit 1.0: A Computer Program for Fitting Multi-Isotopomer Diatomic Molecule Spectra, (University of Waterloo, Waterloo, Canada, 2000).

Manhati, P. C.

P. C. Manhati, “The band spectra of MgO, CaO and SrO,” Phys. Rev. 42, 609–621 (1932).
[CrossRef]

McCombie, J.

P. C. F. Ip, K. J. Cross, R. W. Field, J. Rostas, B. Bourguignon, J. McCombie, “The B1Σ+–a3Πi and D1Δ–a3Π1 intercombination systems of the MgO molecule,” J. Mol. Spectrosc. 146, 409–436 (1991).
[CrossRef]

McDonald, J. R.

L. Pasternack, A. P. Baronavski, J. R. McDonald, “Application of saturation spectroscopy for measurement of atomic Na and MgO in acetylene flames,” J. Chem. Phys. 69, 4830–4837 (1978).
[CrossRef]

Mürtz, P.

P. Mürtz, H. Thümmel, C. Pfelzer, W. Urban, “New bands of the MgO A1Π–X1Σ+ and a3Π0,1–X1Σ+ systems by Faraday laser magnetic resonance spectroscopy,” Mol. Phys. 86, 513–534 (1995).

P. Mürtz, S. Richter, C. Pfelzer, H. Thümmel, W. Urban, “Faraday LMR spectroscopy of the MgO A1Π–X1Σ+ (0–2) and a3Π0,1–X1Σ+ (0-1) bands,” Mol. Phys. 82, 989–1007 (1994).
[CrossRef]

Nicholls, R. W.

R. W. Nicholls, “Franck-Condon factors to high vibrational quantum numbers II: SiO, MgO, SrO, ALO, VO, NO,” J. Res. Natl. Bur. Stand. Sect. A 66, 227–231 (1962).
[CrossRef]

Pasternack, L.

L. Pasternack, A. P. Baronavski, J. R. McDonald, “Application of saturation spectroscopy for measurement of atomic Na and MgO in acetylene flames,” J. Chem. Phys. 69, 4830–4837 (1978).
[CrossRef]

Pfelzer, C.

P. Mürtz, H. Thümmel, C. Pfelzer, W. Urban, “New bands of the MgO A1Π–X1Σ+ and a3Π0,1–X1Σ+ systems by Faraday laser magnetic resonance spectroscopy,” Mol. Phys. 86, 513–534 (1995).

P. Mürtz, S. Richter, C. Pfelzer, H. Thümmel, W. Urban, “Faraday LMR spectroscopy of the MgO A1Π–X1Σ+ (0–2) and a3Π0,1–X1Σ+ (0-1) bands,” Mol. Phys. 82, 989–1007 (1994).
[CrossRef]

Richter, S.

P. Mürtz, S. Richter, C. Pfelzer, H. Thümmel, W. Urban, “Faraday LMR spectroscopy of the MgO A1Π–X1Σ+ (0–2) and a3Π0,1–X1Σ+ (0-1) bands,” Mol. Phys. 82, 989–1007 (1994).
[CrossRef]

Rostas, J.

B. Bourguignon, J. Rostas, “The d3Δi–a3Πi and d3Δ2–A1Π systems of the MgO molecule,” J. Mol. Spectrosc. 146, 437–454 (1991).
[CrossRef]

P. C. F. Ip, K. J. Cross, R. W. Field, J. Rostas, B. Bourguignon, J. McCombie, “The B1Σ+–a3Πi and D1Δ–a3Π1 intercombination systems of the MgO molecule,” J. Mol. Spectrosc. 146, 409–436 (1991).
[CrossRef]

Shafirovich, E. Ya.

E. Ya. Shafirovich, A. A. Shiryaev, U. I. Goldshleger, “Magnesium and carbon dioxide: a rocket propellant for Mars missions,” J. Propul. Power 9(2), 197–203 (1993).
[CrossRef]

Shiryaev, A. A.

E. Ya. Shafirovich, A. A. Shiryaev, U. I. Goldshleger, “Magnesium and carbon dioxide: a rocket propellant for Mars missions,” J. Propul. Power 9(2), 197–203 (1993).
[CrossRef]

Steimle, T.

Y. Azuma, T. R. Dyke, G. K. Gerke, T. Steimle, “Laser-induced fluorescence and microwave-optical double-resonance study of the B1Σ+–X1Σ+ system of magnesium monoxide,” J. Mol. Spectrosc. 108, 137–142 (1984).
[CrossRef]

Takano, S.

E. Kagi, T. Hirano, S. Takano, K. Kawaguchi, “Fourier transform infrared spectroscopy of the A1Π–X1Σ+ system of MgO,” J. Mol. Spectrosc. 168, 109–125 (1994).
[CrossRef]

Thümmel, H.

P. Mürtz, H. Thümmel, C. Pfelzer, W. Urban, “New bands of the MgO A1Π–X1Σ+ and a3Π0,1–X1Σ+ systems by Faraday laser magnetic resonance spectroscopy,” Mol. Phys. 86, 513–534 (1995).

P. Mürtz, S. Richter, C. Pfelzer, H. Thümmel, W. Urban, “Faraday LMR spectroscopy of the MgO A1Π–X1Σ+ (0–2) and a3Π0,1–X1Σ+ (0-1) bands,” Mol. Phys. 82, 989–1007 (1994).
[CrossRef]

Törring, T.

T. Törring, J. Hoeft, “The microwave absorption spectrum of MgO,” Chem. Phys. Lett. 126, 477–480 (1986).
[CrossRef]

Trajmar, S.

S. Trajmar, G. E. Ewing, “The near ultraviolet bands of MgO: analysis of the D1Δ–A1Π and D1Δ–C1Π systems,” Astrophys. J. 142, 77–83 (1965).
[CrossRef]

L. Brewer, S. Trajmar, R. A. Berg, “Analysis of the ultraviolet system of magnesium oxide,” Astrophys. J. 135, 955–962 (1962).
[CrossRef]

Uhler, U.

A. Lagerqvist, U. Uhler, “The red and green bands of magnesium oxide,” Ark. Fys. 1, 459–475 (1949).

Urban, W.

P. Mürtz, H. Thümmel, C. Pfelzer, W. Urban, “New bands of the MgO A1Π–X1Σ+ and a3Π0,1–X1Σ+ systems by Faraday laser magnetic resonance spectroscopy,” Mol. Phys. 86, 513–534 (1995).

P. Mürtz, S. Richter, C. Pfelzer, H. Thümmel, W. Urban, “Faraday LMR spectroscopy of the MgO A1Π–X1Σ+ (0–2) and a3Π0,1–X1Σ+ (0-1) bands,” Mol. Phys. 82, 989–1007 (1994).
[CrossRef]

Wong, N. B.

T. Ikeda, N. B. Wong, D. O. Harris, R. W. Field, “Argon ion and dye laser induced MgO B1Σ+–X1Σ+ and B1Σ+–A1Π photoluminescence spectra,” J. Mol. Spectrosc. 68, 452–487 (1977).
[CrossRef]

Woolridge, M. S.

M. S. Woolridge, “Gas-phase combustion synthesis of particles,” Prog. Energy Combust. Sci. 24, 63–87 (1998).
[CrossRef]

Ark. Fys. (1)

A. Lagerqvist, U. Uhler, “The red and green bands of magnesium oxide,” Ark. Fys. 1, 459–475 (1949).

Ark. Mat. Astron. Fys. (1)

A. Lagerqvist, “The green bands of magnesium oxide,” Ark. Mat. Astron. Fys. 29 A (25), 1–14 (1943).

Astrophys. J. (2)

L. Brewer, S. Trajmar, R. A. Berg, “Analysis of the ultraviolet system of magnesium oxide,” Astrophys. J. 135, 955–962 (1962).
[CrossRef]

S. Trajmar, G. E. Ewing, “The near ultraviolet bands of MgO: analysis of the D1Δ–A1Π and D1Δ–C1Π systems,” Astrophys. J. 142, 77–83 (1965).
[CrossRef]

Chem. Phys. Lett. (2)

A. Civis̆, H. Hedderich, C. Blom, “The infrared spectrum of magnesium oxide: a diode laser study using the discharge-enhanced reaction between hot magnesium vapor and N2O,” Chem. Phys. Lett. 176, 489–494 (1991).
[CrossRef]

T. Törring, J. Hoeft, “The microwave absorption spectrum of MgO,” Chem. Phys. Lett. 126, 477–480 (1986).
[CrossRef]

J. Chem. Phys. (1)

L. Pasternack, A. P. Baronavski, J. R. McDonald, “Application of saturation spectroscopy for measurement of atomic Na and MgO in acetylene flames,” J. Chem. Phys. 69, 4830–4837 (1978).
[CrossRef]

J. Mol. Spectrosc. (5)

E. Kagi, T. Hirano, S. Takano, K. Kawaguchi, “Fourier transform infrared spectroscopy of the A1Π–X1Σ+ system of MgO,” J. Mol. Spectrosc. 168, 109–125 (1994).
[CrossRef]

T. Ikeda, N. B. Wong, D. O. Harris, R. W. Field, “Argon ion and dye laser induced MgO B1Σ+–X1Σ+ and B1Σ+–A1Π photoluminescence spectra,” J. Mol. Spectrosc. 68, 452–487 (1977).
[CrossRef]

Y. Azuma, T. R. Dyke, G. K. Gerke, T. Steimle, “Laser-induced fluorescence and microwave-optical double-resonance study of the B1Σ+–X1Σ+ system of magnesium monoxide,” J. Mol. Spectrosc. 108, 137–142 (1984).
[CrossRef]

B. Bourguignon, J. Rostas, “The d3Δi–a3Πi and d3Δ2–A1Π systems of the MgO molecule,” J. Mol. Spectrosc. 146, 437–454 (1991).
[CrossRef]

P. C. F. Ip, K. J. Cross, R. W. Field, J. Rostas, B. Bourguignon, J. McCombie, “The B1Σ+–a3Πi and D1Δ–a3Π1 intercombination systems of the MgO molecule,” J. Mol. Spectrosc. 146, 409–436 (1991).
[CrossRef]

J. Propul. Power (1)

E. Ya. Shafirovich, A. A. Shiryaev, U. I. Goldshleger, “Magnesium and carbon dioxide: a rocket propellant for Mars missions,” J. Propul. Power 9(2), 197–203 (1993).
[CrossRef]

J. Res. Natl. Bur. Stand. Sect. A (1)

R. W. Nicholls, “Franck-Condon factors to high vibrational quantum numbers II: SiO, MgO, SrO, ALO, VO, NO,” J. Res. Natl. Bur. Stand. Sect. A 66, 227–231 (1962).
[CrossRef]

Mol. Phys. (2)

P. Mürtz, S. Richter, C. Pfelzer, H. Thümmel, W. Urban, “Faraday LMR spectroscopy of the MgO A1Π–X1Σ+ (0–2) and a3Π0,1–X1Σ+ (0-1) bands,” Mol. Phys. 82, 989–1007 (1994).
[CrossRef]

P. Mürtz, H. Thümmel, C. Pfelzer, W. Urban, “New bands of the MgO A1Π–X1Σ+ and a3Π0,1–X1Σ+ systems by Faraday laser magnetic resonance spectroscopy,” Mol. Phys. 86, 513–534 (1995).

Phys. Rev. (1)

P. C. Manhati, “The band spectra of MgO, CaO and SrO,” Phys. Rev. 42, 609–621 (1932).
[CrossRef]

Prog. Energy Combust. Sci. (2)

M. S. Woolridge, “Gas-phase combustion synthesis of particles,” Prog. Energy Combust. Sci. 24, 63–87 (1998).
[CrossRef]

E. L. Dreizin, “Phase changes in metal combustion,” Prog. Energy Combust. Sci. 26, 57–78 (2000).
[CrossRef]

Other (3)

A. Abbud-Madrid, M. C. Branch, J. W. Daily, “Ignition and combustion of bulk titanium and magnesium at normal and reduced gravity,” in Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1996), pp. 1929–1936.
[CrossRef]

P. C. F. Ip, “Laser spectroscopy and dynamics of magnesium + nitrous oxide flame systems,” Ph.D. dissertation (Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass., 1983).

R. J. Le Roy, DSParFit 1.0: A Computer Program for Fitting Multi-Isotopomer Diatomic Molecule Spectra, (University of Waterloo, Waterloo, Canada, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the lowest six electronic energy levels of MgO and the band origin of several of the vibrational energy levels within each.

Fig. 2
Fig. 2

Schematic of the experimental apparatus. PMT, photomultiplier tube.

Fig. 3
Fig. 3

Variation of the signal with height above the burner. Upper trace: signal that is due to excitation of the (0,0) line overlap of P51, R36, and Q43 at 600.752 nm. Lower trace: signal that is due to excitation of local minimum at 606.346 nm, with overlap of wings of (0,1), (2,3), and (3,4) transitions. Middle trace: difference between upper and lower traces.

Fig. 4
Fig. 4

Saturation of (0,0) bandhead of MgO B 1Σ+A 1Π in seeded flame. Upper trace: signal that is due to excitation of (0,0) bandhead. Lower trace: signal that is due to excitation of local minimum at 606.346 nm that is due to overlap of wings of (0,1), (2,3), and (3,4) transitions. Middle trace: difference between upper and lower traces.

Fig. 5
Fig. 5

Complete fluorescence excitation scan of MgO from 588 to 633 nm at 0.001-nm resolution.

Fig. 6
Fig. 6

Portion of the excitation scan showing B 1Σ+A 1Π(0,1) lines that are relatively free of interferences. a, line positions used in the analysis of this study; b, line positions tabulated in Ref. 6; c, line positions calculated from A 1Π rotational parameters of Ref. 13; d, line positions calculated from A 1Π rotational parameters of Ref. 17. In addition, the B 1Σ+ rotational parameters of Ref. 14 and the (0,1) Q(0) energy given by Ref. 6 were used to determine the line positions c and d.

Fig. 7
Fig. 7

B 1Σ+A 1Π (0,1) bandhead region. Line positions determined in this analysis are indicated and compared with the line positions calculated from the A 1Π rotational parameters of Ref. 13, the B 1Σ+ rotational parameters of Ref. 14, and the (0,1) Q(0) energy given by Ref. 6.

Fig. 8
Fig. 8

B 1Σ+A 1Π (0,0) bandhead region. Line positions determined in this analysis are indicated and compared with the line positions calculated from the A 1Π rotational parameters of Ref. 13, the B 1Σ+ rotational parameters of Ref. 14, and the (0,1) Q(0) energy given by Ref. 6.

Tables (2)

Tables Icon

Table 1 Summary of Previous Research on MgO A 1 Π and B 1 Σ + State Rotational Parameters

Tables Icon

Table 2 Rotational Constants (cm-1) for the Observed Vibrational Bands of the B1Σ+ state in Comparison with Earlier Publicationsa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EJ=Gv+BvJJ+1-Λ2-DvJJ+1-Λ22.

Metrics