Abstract

The scattering of laser pulses (in the femtosecond–picosecond range) by large spheres is investigated. We call a sphere large when its diameter is larger than the length associated with the pulse duration, allowing one to observe the temporal separation of scattering modes including surface waves.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theories, from past to future,” Atomization Sprays 10, 277–333 (2000).
  2. G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).
  3. G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theory for assemblies of spheres and aggregates,” J. Opt. A: Pure Appl. Opt. 1, 706–712 (1999).
  4. G. Gouesbet, G. Gréhan, “Generic formulation of a generalized Lorenz–Mie theory for a particle illuminated by laser pulses,” Part. Part. Syst. Charact. (to be published).
  5. D. Q. Chowdhury, S. C. Hill, P. W. Barber, “Time dependence of internal intensity of a dielectric sphere on and near resonance,” J. Opt. Soc. Am. A 9, 1364–1373 (1992).
    [Crossref]
  6. K. S. Shifrin, I. G. Zolotov, “Quasi-stationary scattering of electromagnetic pulses by spherical particles,” Appl. Opt. 33, 7798–7804 (1994).
    [Crossref] [PubMed]
  7. G. Gouesbet, “Exact description of arbitrary shaped beams for use in light scattering theories,” J. Opt. Soc. Am. A 13, 2434–2440 (1996).
    [Crossref]
  8. G. Gouesbet, “Theory of distributions and its application to beam parametrization in light scattering,” Part. Part. Syst. Charact. 16, 147–159 (1999).
    [Crossref]
  9. F. Roddier, Distributions et transformations de Fourier (McGraw-Hill, New York, 1978).
  10. R. W. Sellens, “A derivation of phase Doppler measurement relation for an arbitrary geometry,” Exp. Fluids 8, 165–168 (1989).
  11. H. Bultynck, “Développement de sondes laser Doppler miniatures pour la mesure de particules dans des écoulements réels complexes,” Ph.D. dissertation (Université de Rouen, Fevrier, 1998).
  12. J. Lock, “Improved Gaussian beam scattering algorithm,” Appl. Opt. 34, 559–570 (1995).
    [Crossref] [PubMed]
  13. G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999).
    [Crossref]
  14. G. Gréhan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).
    [Crossref] [PubMed]

2000 (2)

G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theories, from past to future,” Atomization Sprays 10, 277–333 (2000).

G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

1999 (3)

G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theory for assemblies of spheres and aggregates,” J. Opt. A: Pure Appl. Opt. 1, 706–712 (1999).

G. Gouesbet, “Theory of distributions and its application to beam parametrization in light scattering,” Part. Part. Syst. Charact. 16, 147–159 (1999).
[Crossref]

G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999).
[Crossref]

1996 (1)

1995 (1)

1994 (1)

1992 (1)

1989 (1)

R. W. Sellens, “A derivation of phase Doppler measurement relation for an arbitrary geometry,” Exp. Fluids 8, 165–168 (1989).

1986 (1)

Barber, P. W.

Bultynck, H.

H. Bultynck, “Développement de sondes laser Doppler miniatures pour la mesure de particules dans des écoulements réels complexes,” Ph.D. dissertation (Université de Rouen, Fevrier, 1998).

Chowdhury, D. Q.

Gouesbet, G.

G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theories, from past to future,” Atomization Sprays 10, 277–333 (2000).

G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theory for assemblies of spheres and aggregates,” J. Opt. A: Pure Appl. Opt. 1, 706–712 (1999).

G. Gouesbet, “Validity of the localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for spheres,” J. Opt. Soc. Am. A 16, 1641–1650 (1999).
[Crossref]

G. Gouesbet, “Theory of distributions and its application to beam parametrization in light scattering,” Part. Part. Syst. Charact. 16, 147–159 (1999).
[Crossref]

G. Gouesbet, “Exact description of arbitrary shaped beams for use in light scattering theories,” J. Opt. Soc. Am. A 13, 2434–2440 (1996).
[Crossref]

G. Gréhan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).
[Crossref] [PubMed]

G. Gouesbet, G. Gréhan, “Generic formulation of a generalized Lorenz–Mie theory for a particle illuminated by laser pulses,” Part. Part. Syst. Charact. (to be published).

Gréhan, G.

G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theories, from past to future,” Atomization Sprays 10, 277–333 (2000).

G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theory for assemblies of spheres and aggregates,” J. Opt. A: Pure Appl. Opt. 1, 706–712 (1999).

G. Gréhan, B. Maheu, G. Gouesbet, “Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation,” Appl. Opt. 25, 3539–3548 (1986).
[Crossref] [PubMed]

G. Gouesbet, G. Gréhan, “Generic formulation of a generalized Lorenz–Mie theory for a particle illuminated by laser pulses,” Part. Part. Syst. Charact. (to be published).

Hill, S. C.

Lock, J.

Maheu, B.

Roddier, F.

F. Roddier, Distributions et transformations de Fourier (McGraw-Hill, New York, 1978).

Sellens, R. W.

R. W. Sellens, “A derivation of phase Doppler measurement relation for an arbitrary geometry,” Exp. Fluids 8, 165–168 (1989).

Shifrin, K. S.

Zolotov, I. G.

Appl. Opt. (3)

Atomization Sprays (1)

G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theories, from past to future,” Atomization Sprays 10, 277–333 (2000).

Exp. Fluids (1)

R. W. Sellens, “A derivation of phase Doppler measurement relation for an arbitrary geometry,” Exp. Fluids 8, 165–168 (1989).

J. Mod. Opt. (1)

G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theory for a sphere with an eccentrically located spherical inclusion,” J. Mod. Opt. 47, 821–837 (2000).

J. Opt. A: Pure Appl. Opt. (1)

G. Gouesbet, G. Gréhan, “Generalized Lorenz–Mie theory for assemblies of spheres and aggregates,” J. Opt. A: Pure Appl. Opt. 1, 706–712 (1999).

J. Opt. Soc. Am. A (3)

Part. Part. Syst. Charact. (1)

G. Gouesbet, “Theory of distributions and its application to beam parametrization in light scattering,” Part. Part. Syst. Charact. 16, 147–159 (1999).
[Crossref]

Other (3)

F. Roddier, Distributions et transformations de Fourier (McGraw-Hill, New York, 1978).

G. Gouesbet, G. Gréhan, “Generic formulation of a generalized Lorenz–Mie theory for a particle illuminated by laser pulses,” Part. Part. Syst. Charact. (to be published).

H. Bultynck, “Développement de sondes laser Doppler miniatures pour la mesure de particules dans des écoulements réels complexes,” Ph.D. dissertation (Université de Rouen, Fevrier, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Case under study with the polarization defined by φ = 0°.

Fig. 2
Fig. 2

Pulsed plane-wave backward scattering on a water droplet.

Fig. 3
Fig. 3

Pulsed plane-wave backward scattering on a glass sphere.

Fig. 4
Fig. 4

Pulsed plane-wave 45° scattering on a water droplet.

Fig. 5
Fig. 5

Pulsed plane-wave backward scattering on a glass sphere: details of peak B.

Fig. 6
Fig. 6

Pulsed plane-wave 45° scattering on a water droplet: details of peak B.

Fig. 7
Fig. 7

Backward water droplet scattering with the beam diameter as parameter: details of peak B.

Fig. 8
Fig. 8

Backward water droplet scattering with the beam waist location along the x axis as a parameter.

Fig. 9
Fig. 9

Backward water droplet scattering with the beam-waist location along the y axis as a parameter.

Tables (2)

Tables Icon

Table 1 Comparisons Between Pulsed GLMT and Geometrical Opticsa

Tables Icon

Table 2 Comparisons Between Measured Peak Locations in Figs. 2 and 3 and Surface Wave Predictions

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Xir, τ=X0Xisrexp2iπν0τgτ,
τ=t-z/c,
Gν=-+ gτexp-2iπντdτ,
gτ=-+ Gνexp+2iπντdν,
Gν=G-ν*,
gτ=0+ Gνexp+2iπντdν+0+ Gν*exp-2iπντdν.
Xir, τ=X0Xisr0+ Gν-ν0exp+2iπντdν×0+ Gν+ν0*exp+2iπντdν,
Xipr, τ=0+ Gν-ν0Xicwr, νexp+2iπντdν+0+ Gν+ν0*Xicwr, -ν×exp+2iπντdν.
Xipr, τ=-1˜Gν-ν0Xicwr, ν,

Metrics