Abstract

The nonresonant two-photon absorption (TPA) coefficient in silver selenogallate (AgGaSe2) crystals was measured for both ordinary and extraordinary polarizations in the 1300–1600-nm wavelength range. We found a cutoff wavelength for the TPA at between 1400 and 1500 nm, which corresponds to half of the bandgap energy of the AgGaSe2 crystal. Below the cutoff wavelength we measured the TPA coefficient to be approximately 0.035 cm/MW for the extraordinary polarization and two to three times lower for the ordinary polarization. We compared the AgGaSe2 samples from two manufacturers and observed a factor of 2 difference in the TPA coefficients. Because of the high TPA, the 1.32-µm pumped AgGaSe2 optical parametric oscillator conversion efficiency was clipped at a low level.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
    [CrossRef]
  2. K. S. Abedin, S. Haidar, Y. Konno, C. Takyu, H. Ito, “Difference frequency generation of 5–18 µm in a AgGaSe2 crystal,” Appl. Opt. 37, 1642–1646 (1998).
    [CrossRef]
  3. K. P. Petrov, R. F. Curl, F. K. Tittel, L. Goldberg, “Continuous-wave tunable 8.7-µm spectroscopic source pumped by fiber-coupled communications lasers,” Opt. Lett. 21, 1451–1453 (1996).
    [CrossRef] [PubMed]
  4. S. Haidar, H. Iti, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 15, 171–176 (1999).
    [CrossRef]
  5. N. P. Barnes, D. J. Gettemy, J. R. Hietanen, R. A. Iannini, “Parametric amplification in AgGaSe2,” Appl. Opt. 28, 5162–5168 (1989).
    [CrossRef] [PubMed]
  6. A. Miller, G. S. Ash, “Two-photon absorption and short pulse stimulated recombination in AgGaSe2,” Opt. Commun. 33, 297–300 (1980).
    [CrossRef]
  7. A. A. Bugarev, G. K. Averkieva, V. D. Prochukhan, “Two-photon absorption and nonstationary energy transfer in the ternary semiconductor AgGaSe2,” Phys. Solid State 37, 1367–1370 (1995).
  8. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 12.
  9. G. C. Catella, L. R. Shiozawa, J. R. Hietanen, R. C. Eckardt, R. K. Route, R. S. Feigelson, D. G. Cooper, C. L. Marquardt, “Mid-IR absorption in AgGaSe2 optical parametric oscillator crystals,” Appl. Opt. 32, 3948–3951 (1993).
    [PubMed]
  10. AgGaSe2 Data Sheet (Cleveland Crystals, Inc., 19306 Redwood Road, Cleveland, Ohio 44110).
  11. D. Kuzma, “AgGaSe2 manufacture data,” Eksma Company, Mokslininku 11, 2600 Vilnius, Lithuania (personal communication, 2000).

1999 (1)

S. Haidar, H. Iti, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 15, 171–176 (1999).
[CrossRef]

1998 (1)

1996 (1)

1995 (1)

A. A. Bugarev, G. K. Averkieva, V. D. Prochukhan, “Two-photon absorption and nonstationary energy transfer in the ternary semiconductor AgGaSe2,” Phys. Solid State 37, 1367–1370 (1995).

1993 (1)

1989 (1)

1986 (1)

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

1980 (1)

A. Miller, G. S. Ash, “Two-photon absorption and short pulse stimulated recombination in AgGaSe2,” Opt. Commun. 33, 297–300 (1980).
[CrossRef]

Abedin, K. S.

Ash, G. S.

A. Miller, G. S. Ash, “Two-photon absorption and short pulse stimulated recombination in AgGaSe2,” Opt. Commun. 33, 297–300 (1980).
[CrossRef]

Averkieva, G. K.

A. A. Bugarev, G. K. Averkieva, V. D. Prochukhan, “Two-photon absorption and nonstationary energy transfer in the ternary semiconductor AgGaSe2,” Phys. Solid State 37, 1367–1370 (1995).

Barnes, N. P.

Bugarev, A. A.

A. A. Bugarev, G. K. Averkieva, V. D. Prochukhan, “Two-photon absorption and nonstationary energy transfer in the ternary semiconductor AgGaSe2,” Phys. Solid State 37, 1367–1370 (1995).

Byer, R. L.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Catella, G. C.

Cooper, D. G.

Curl, R. F.

Eckardt, R. C.

G. C. Catella, L. R. Shiozawa, J. R. Hietanen, R. C. Eckardt, R. K. Route, R. S. Feigelson, D. G. Cooper, C. L. Marquardt, “Mid-IR absorption in AgGaSe2 optical parametric oscillator crystals,” Appl. Opt. 32, 3948–3951 (1993).
[PubMed]

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Esterowitz, L.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Feigelson, R. S.

Gettemy, D. J.

Goldberg, L.

Haidar, S.

S. Haidar, H. Iti, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 15, 171–176 (1999).
[CrossRef]

K. S. Abedin, S. Haidar, Y. Konno, C. Takyu, H. Ito, “Difference frequency generation of 5–18 µm in a AgGaSe2 crystal,” Appl. Opt. 37, 1642–1646 (1998).
[CrossRef]

Hietanen, J. R.

Iannini, R. A.

Iti, H.

S. Haidar, H. Iti, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 15, 171–176 (1999).
[CrossRef]

Ito, H.

Konno, Y.

Kuzma, D.

D. Kuzma, “AgGaSe2 manufacture data,” Eksma Company, Mokslininku 11, 2600 Vilnius, Lithuania (personal communication, 2000).

Marquardt, C. L.

G. C. Catella, L. R. Shiozawa, J. R. Hietanen, R. C. Eckardt, R. K. Route, R. S. Feigelson, D. G. Cooper, C. L. Marquardt, “Mid-IR absorption in AgGaSe2 optical parametric oscillator crystals,” Appl. Opt. 32, 3948–3951 (1993).
[PubMed]

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Miller, A.

A. Miller, G. S. Ash, “Two-photon absorption and short pulse stimulated recombination in AgGaSe2,” Opt. Commun. 33, 297–300 (1980).
[CrossRef]

Petrov, K. P.

Prochukhan, V. D.

A. A. Bugarev, G. K. Averkieva, V. D. Prochukhan, “Two-photon absorption and nonstationary energy transfer in the ternary semiconductor AgGaSe2,” Phys. Solid State 37, 1367–1370 (1995).

Route, R. K.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 12.

Shiozawa, L. R.

Storm, M. E.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Takyu, C.

Tittel, F. K.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Opt. Commun. (2)

S. Haidar, H. Iti, “Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR,” Opt. Commun. 15, 171–176 (1999).
[CrossRef]

A. Miller, G. S. Ash, “Two-photon absorption and short pulse stimulated recombination in AgGaSe2,” Opt. Commun. 33, 297–300 (1980).
[CrossRef]

Opt. Lett. (1)

Phys. Solid State (1)

A. A. Bugarev, G. K. Averkieva, V. D. Prochukhan, “Two-photon absorption and nonstationary energy transfer in the ternary semiconductor AgGaSe2,” Phys. Solid State 37, 1367–1370 (1995).

Other (3)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 12.

AgGaSe2 Data Sheet (Cleveland Crystals, Inc., 19306 Redwood Road, Cleveland, Ohio 44110).

D. Kuzma, “AgGaSe2 manufacture data,” Eksma Company, Mokslininku 11, 2600 Vilnius, Lithuania (personal communication, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: WP, λ/2 wave plate; P, polarizer; BS, 4% beam splitter; PM1, PM2, powermeters.

Fig. 2
Fig. 2

Measured transmission curve of AgGaSe2, as a function of the input intensity. The solid curves represent the fitting curve of Eq. (4). e-pol, extraordinary polarization; o-pol, ordinary polarization.

Fig. 3
Fig. 3

Idler conversion efficiency as a function of pump intensity: λpump = 1.32 µm and λidler = 9.5 µm. The AgGaSe2 was supplied by Cleveland Crystals, Inc.

Tables (1)

Tables Icon

Table 1 TPA Coefficients for Ordinary and Extraordinary Polarizations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I=P/fτπw2,
dIdz=-αI-βI2,
IT=Ii exp-αL1+Iiβ1-exp-αL/α,
IT=1-R2Ii exp-αL1+1-RIiβ1-exp-αL/α,

Metrics