Abstract

Incoherent fluorescence optical Kerr gating can in principle be used to measure fluorescence anisotropies and determine molecular reorientational times. A novel method for fluorescence anisotropy by use of optical Kerr gating with incoherent laser light is presented. Incoherent optical Kerr signals have been obtained for parallel and perpendicular fluorescence polarization for a 10-3-M solution of Rhodamine 6G in ethanol.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. O’Conner, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).
  2. S. M. Arakelyan, G. A. Lyakov, Y. S. Chilingaryan, “Nonlinear optics of liquid crystal,” Sov. Phys. Usp. 23, 245–255 (1980).
    [CrossRef]
  3. L. B. Johansson, A. Davidson, G. Lindblem, K. R. Naqvi, “Electronic transitions in the isoalloxazine ring and orientation of flavins in model membranes studied by polarized light spectroscopy,” Biochem. J. 18, 4249–4253 (1979).
    [CrossRef]
  4. P. D. Maker, R. W. Terhune, C. W. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
    [CrossRef]
  5. G. Mayer, R. Gires, “The effect of an intense light beam on the index of refraction of liquids,” C. R. Acad. Sci. 258, 2039–2042 (1963).
  6. M. A. Duguay, J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
    [CrossRef]
  7. D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
    [CrossRef]
  8. C. Kalpouzos, W. T. Lotshaw, D. McMorrow, G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
    [CrossRef]
  9. B. I. Greene, R. C. Farrow, “The subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 98, 273–276 (1983).
    [CrossRef]
  10. N. Morita, T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
    [CrossRef]
  11. H. Nakatsuka, Y. Katsahima, K. Inouye, “Fluorescence lifetime measurement of semiconductor doped glass by using an incoherent light gated optical Kerr shutter,” Opt. Commun. 74, 219–222 (1989).
    [CrossRef]
  12. T. Hattori, T. Kobayashi, “Ultrafast optical Kerr dynamics studies with incoherent light,” J. Chem. Phys. 94, 3332–3345 (1991).
    [CrossRef]
  13. K. Misawa, T. Hattori, T. Kobayashi, “Measurement of dephasing time using incoherent light in the Kerr shutter configuration,” Opt. Lett. 14, 453–455 (1989).
    [CrossRef] [PubMed]
  14. A. Squire, “Incoherent laser light as a probe of ultrafast nonlinear optics,” Ph.D. dissertation (University of Essex, Essex, UK., 1996).
  15. D. L. Rosen, A. G. Doukes, Y. Budansky, R. R. Alfano, Semiconductor Probed by Ultrafast Laser Spectroscopy (Academic, San Diego, Calif., 1984), Vol. II.
  16. A. A. Al-Ghamdi, “Incoherent laser light as a probe of ultrafast molecular relaxation dynamics,” Ph.D. dissertation (University of Essex, Essex, UK., 1996).
  17. C. Kalpouzos, D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond laser-induced optical Kerr dynamics in CS2/alkane binary solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
    [CrossRef]
  18. A. J. Bain, P. Chandana, G. Butcher, “Strong molecular alignment in anisotropic fluid media,” Chem. Phys. Lett. 260, 441–446 (1996).
    [CrossRef]
  19. T. Tao, “Time-dependent fluorescence depolarisation and Brownian rotational diffusion coefficients of macromolecules,” Biopolymers 8, 609–632 (1969).
    [CrossRef]
  20. A. A. Al-Ghamdi, “Fluorescence anisotropy of rhodamine 6G using incoherent laser light,” in Organic Light-Emitting Materials and Devices II, Z. H. Kafafi, ed., Proc. SPIE3476, 267–277 (1998).
    [CrossRef]
  21. P. Chandna, “Time resolved fluorescence studies of molecular alignment and orientational motion in anisotropy fluid media,” Ph.D. dissertation (University of Essex, Essex, UK, 1995).

1996 (1)

A. J. Bain, P. Chandana, G. Butcher, “Strong molecular alignment in anisotropic fluid media,” Chem. Phys. Lett. 260, 441–446 (1996).
[CrossRef]

1991 (1)

T. Hattori, T. Kobayashi, “Ultrafast optical Kerr dynamics studies with incoherent light,” J. Chem. Phys. 94, 3332–3345 (1991).
[CrossRef]

1989 (2)

K. Misawa, T. Hattori, T. Kobayashi, “Measurement of dephasing time using incoherent light in the Kerr shutter configuration,” Opt. Lett. 14, 453–455 (1989).
[CrossRef] [PubMed]

H. Nakatsuka, Y. Katsahima, K. Inouye, “Fluorescence lifetime measurement of semiconductor doped glass by using an incoherent light gated optical Kerr shutter,” Opt. Commun. 74, 219–222 (1989).
[CrossRef]

1988 (2)

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond laser-induced optical Kerr dynamics in CS2/alkane binary solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[CrossRef]

D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

1987 (1)

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

1984 (1)

N. Morita, T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[CrossRef]

1983 (1)

B. I. Greene, R. C. Farrow, “The subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 98, 273–276 (1983).
[CrossRef]

1980 (1)

S. M. Arakelyan, G. A. Lyakov, Y. S. Chilingaryan, “Nonlinear optics of liquid crystal,” Sov. Phys. Usp. 23, 245–255 (1980).
[CrossRef]

1979 (1)

L. B. Johansson, A. Davidson, G. Lindblem, K. R. Naqvi, “Electronic transitions in the isoalloxazine ring and orientation of flavins in model membranes studied by polarized light spectroscopy,” Biochem. J. 18, 4249–4253 (1979).
[CrossRef]

1969 (2)

M. A. Duguay, J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

T. Tao, “Time-dependent fluorescence depolarisation and Brownian rotational diffusion coefficients of macromolecules,” Biopolymers 8, 609–632 (1969).
[CrossRef]

1964 (1)

P. D. Maker, R. W. Terhune, C. W. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

1963 (1)

G. Mayer, R. Gires, “The effect of an intense light beam on the index of refraction of liquids,” C. R. Acad. Sci. 258, 2039–2042 (1963).

Alfano, R. R.

D. L. Rosen, A. G. Doukes, Y. Budansky, R. R. Alfano, Semiconductor Probed by Ultrafast Laser Spectroscopy (Academic, San Diego, Calif., 1984), Vol. II.

Al-Ghamdi, A. A.

A. A. Al-Ghamdi, “Incoherent laser light as a probe of ultrafast molecular relaxation dynamics,” Ph.D. dissertation (University of Essex, Essex, UK., 1996).

A. A. Al-Ghamdi, “Fluorescence anisotropy of rhodamine 6G using incoherent laser light,” in Organic Light-Emitting Materials and Devices II, Z. H. Kafafi, ed., Proc. SPIE3476, 267–277 (1998).
[CrossRef]

Arakelyan, S. M.

S. M. Arakelyan, G. A. Lyakov, Y. S. Chilingaryan, “Nonlinear optics of liquid crystal,” Sov. Phys. Usp. 23, 245–255 (1980).
[CrossRef]

Bain, A. J.

A. J. Bain, P. Chandana, G. Butcher, “Strong molecular alignment in anisotropic fluid media,” Chem. Phys. Lett. 260, 441–446 (1996).
[CrossRef]

Budansky, Y.

D. L. Rosen, A. G. Doukes, Y. Budansky, R. R. Alfano, Semiconductor Probed by Ultrafast Laser Spectroscopy (Academic, San Diego, Calif., 1984), Vol. II.

Butcher, G.

A. J. Bain, P. Chandana, G. Butcher, “Strong molecular alignment in anisotropic fluid media,” Chem. Phys. Lett. 260, 441–446 (1996).
[CrossRef]

Chandana, P.

A. J. Bain, P. Chandana, G. Butcher, “Strong molecular alignment in anisotropic fluid media,” Chem. Phys. Lett. 260, 441–446 (1996).
[CrossRef]

Chandna, P.

P. Chandna, “Time resolved fluorescence studies of molecular alignment and orientational motion in anisotropy fluid media,” Ph.D. dissertation (University of Essex, Essex, UK, 1995).

Chilingaryan, Y. S.

S. M. Arakelyan, G. A. Lyakov, Y. S. Chilingaryan, “Nonlinear optics of liquid crystal,” Sov. Phys. Usp. 23, 245–255 (1980).
[CrossRef]

Davidson, A.

L. B. Johansson, A. Davidson, G. Lindblem, K. R. Naqvi, “Electronic transitions in the isoalloxazine ring and orientation of flavins in model membranes studied by polarized light spectroscopy,” Biochem. J. 18, 4249–4253 (1979).
[CrossRef]

Doukes, A. G.

D. L. Rosen, A. G. Doukes, Y. Budansky, R. R. Alfano, Semiconductor Probed by Ultrafast Laser Spectroscopy (Academic, San Diego, Calif., 1984), Vol. II.

Duguay, M. A.

M. A. Duguay, J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

Farrow, R. C.

B. I. Greene, R. C. Farrow, “The subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 98, 273–276 (1983).
[CrossRef]

Gires, R.

G. Mayer, R. Gires, “The effect of an intense light beam on the index of refraction of liquids,” C. R. Acad. Sci. 258, 2039–2042 (1963).

Greene, B. I.

B. I. Greene, R. C. Farrow, “The subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 98, 273–276 (1983).
[CrossRef]

Hansen, J. W.

M. A. Duguay, J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

Hattori, T.

T. Hattori, T. Kobayashi, “Ultrafast optical Kerr dynamics studies with incoherent light,” J. Chem. Phys. 94, 3332–3345 (1991).
[CrossRef]

K. Misawa, T. Hattori, T. Kobayashi, “Measurement of dephasing time using incoherent light in the Kerr shutter configuration,” Opt. Lett. 14, 453–455 (1989).
[CrossRef] [PubMed]

Inouye, K.

H. Nakatsuka, Y. Katsahima, K. Inouye, “Fluorescence lifetime measurement of semiconductor doped glass by using an incoherent light gated optical Kerr shutter,” Opt. Commun. 74, 219–222 (1989).
[CrossRef]

Johansson, L. B.

L. B. Johansson, A. Davidson, G. Lindblem, K. R. Naqvi, “Electronic transitions in the isoalloxazine ring and orientation of flavins in model membranes studied by polarized light spectroscopy,” Biochem. J. 18, 4249–4253 (1979).
[CrossRef]

Kalpouzos, C.

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond laser-induced optical Kerr dynamics in CS2/alkane binary solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[CrossRef]

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

Katsahima, Y.

H. Nakatsuka, Y. Katsahima, K. Inouye, “Fluorescence lifetime measurement of semiconductor doped glass by using an incoherent light gated optical Kerr shutter,” Opt. Commun. 74, 219–222 (1989).
[CrossRef]

Kenney-Wallace, G. A.

D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond laser-induced optical Kerr dynamics in CS2/alkane binary solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[CrossRef]

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

Kobayashi, T.

T. Hattori, T. Kobayashi, “Ultrafast optical Kerr dynamics studies with incoherent light,” J. Chem. Phys. 94, 3332–3345 (1991).
[CrossRef]

K. Misawa, T. Hattori, T. Kobayashi, “Measurement of dephasing time using incoherent light in the Kerr shutter configuration,” Opt. Lett. 14, 453–455 (1989).
[CrossRef] [PubMed]

Lindblem, G.

L. B. Johansson, A. Davidson, G. Lindblem, K. R. Naqvi, “Electronic transitions in the isoalloxazine ring and orientation of flavins in model membranes studied by polarized light spectroscopy,” Biochem. J. 18, 4249–4253 (1979).
[CrossRef]

Lotshaw, W. T.

D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond laser-induced optical Kerr dynamics in CS2/alkane binary solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[CrossRef]

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

Lyakov, G. A.

S. M. Arakelyan, G. A. Lyakov, Y. S. Chilingaryan, “Nonlinear optics of liquid crystal,” Sov. Phys. Usp. 23, 245–255 (1980).
[CrossRef]

Maker, P. D.

P. D. Maker, R. W. Terhune, C. W. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

Mayer, G.

G. Mayer, R. Gires, “The effect of an intense light beam on the index of refraction of liquids,” C. R. Acad. Sci. 258, 2039–2042 (1963).

McMorrow, D.

D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond laser-induced optical Kerr dynamics in CS2/alkane binary solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[CrossRef]

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

Misawa, K.

Morita, N.

N. Morita, T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[CrossRef]

Nakatsuka, H.

H. Nakatsuka, Y. Katsahima, K. Inouye, “Fluorescence lifetime measurement of semiconductor doped glass by using an incoherent light gated optical Kerr shutter,” Opt. Commun. 74, 219–222 (1989).
[CrossRef]

Naqvi, K. R.

L. B. Johansson, A. Davidson, G. Lindblem, K. R. Naqvi, “Electronic transitions in the isoalloxazine ring and orientation of flavins in model membranes studied by polarized light spectroscopy,” Biochem. J. 18, 4249–4253 (1979).
[CrossRef]

O’Conner, D. V.

D. V. O’Conner, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

Phillips, D.

D. V. O’Conner, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

Rosen, D. L.

D. L. Rosen, A. G. Doukes, Y. Budansky, R. R. Alfano, Semiconductor Probed by Ultrafast Laser Spectroscopy (Academic, San Diego, Calif., 1984), Vol. II.

Savage, C. W.

P. D. Maker, R. W. Terhune, C. W. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

Squire, A.

A. Squire, “Incoherent laser light as a probe of ultrafast nonlinear optics,” Ph.D. dissertation (University of Essex, Essex, UK., 1996).

Tao, T.

T. Tao, “Time-dependent fluorescence depolarisation and Brownian rotational diffusion coefficients of macromolecules,” Biopolymers 8, 609–632 (1969).
[CrossRef]

Terhune, R. W.

P. D. Maker, R. W. Terhune, C. W. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

Yajima, T.

N. Morita, T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[CrossRef]

Appl. Phys. Lett. (1)

M. A. Duguay, J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

Biochem. J. (1)

L. B. Johansson, A. Davidson, G. Lindblem, K. R. Naqvi, “Electronic transitions in the isoalloxazine ring and orientation of flavins in model membranes studied by polarized light spectroscopy,” Biochem. J. 18, 4249–4253 (1979).
[CrossRef]

Biopolymers (1)

T. Tao, “Time-dependent fluorescence depolarisation and Brownian rotational diffusion coefficients of macromolecules,” Biopolymers 8, 609–632 (1969).
[CrossRef]

C. R. Acad. Sci. (1)

G. Mayer, R. Gires, “The effect of an intense light beam on the index of refraction of liquids,” C. R. Acad. Sci. 258, 2039–2042 (1963).

Chem. Phys. Lett. (3)

C. Kalpouzos, D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond laser-induced optical Kerr dynamics in CS2/alkane binary solutions,” Chem. Phys. Lett. 150, 138–146 (1988).
[CrossRef]

A. J. Bain, P. Chandana, G. Butcher, “Strong molecular alignment in anisotropic fluid media,” Chem. Phys. Lett. 260, 441–446 (1996).
[CrossRef]

B. I. Greene, R. C. Farrow, “The subpicosecond Kerr effect in CS2,” Chem. Phys. Lett. 98, 273–276 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. McMorrow, W. T. Lotshaw, G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
[CrossRef]

J. Chem. Phys. (1)

T. Hattori, T. Kobayashi, “Ultrafast optical Kerr dynamics studies with incoherent light,” J. Chem. Phys. 94, 3332–3345 (1991).
[CrossRef]

J. Phys. Chem. (1)

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987).
[CrossRef]

Opt. Commun. (1)

H. Nakatsuka, Y. Katsahima, K. Inouye, “Fluorescence lifetime measurement of semiconductor doped glass by using an incoherent light gated optical Kerr shutter,” Opt. Commun. 74, 219–222 (1989).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

N. Morita, T. Yajima, “Ultrahigh-time-resolution coherent transient spectroscopy with incoherent light,” Phys. Rev. A 30, 2525–2536 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

P. D. Maker, R. W. Terhune, C. W. Savage, “Intensity dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

Sov. Phys. Usp. (1)

S. M. Arakelyan, G. A. Lyakov, Y. S. Chilingaryan, “Nonlinear optics of liquid crystal,” Sov. Phys. Usp. 23, 245–255 (1980).
[CrossRef]

Other (6)

D. V. O’Conner, D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).

A. Squire, “Incoherent laser light as a probe of ultrafast nonlinear optics,” Ph.D. dissertation (University of Essex, Essex, UK., 1996).

D. L. Rosen, A. G. Doukes, Y. Budansky, R. R. Alfano, Semiconductor Probed by Ultrafast Laser Spectroscopy (Academic, San Diego, Calif., 1984), Vol. II.

A. A. Al-Ghamdi, “Incoherent laser light as a probe of ultrafast molecular relaxation dynamics,” Ph.D. dissertation (University of Essex, Essex, UK., 1996).

A. A. Al-Ghamdi, “Fluorescence anisotropy of rhodamine 6G using incoherent laser light,” in Organic Light-Emitting Materials and Devices II, Z. H. Kafafi, ed., Proc. SPIE3476, 267–277 (1998).
[CrossRef]

P. Chandna, “Time resolved fluorescence studies of molecular alignment and orientational motion in anisotropy fluid media,” Ph.D. dissertation (University of Essex, Essex, UK, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Time resolved OKG. (a) Isotropic medium inserted between two crossed polarizers (P1 and P2), where no signal passes through P2. (b) Anisotropic medium created by an intense pump pulse polarized at 45° to the probe pulse. This gives rise to a transmitted signal through P2 owing to the resultant change in the polarization of the probe pulse.

Fig. 2
Fig. 2

Calculated optical Kerr fluorescence profiles for parallel [I (τ)] and perpendicular [I (τ)] pump-to-probe cases from Eqs. (9) and (10), respectively. Output parameters: τcoh = 44 ps, τ f = 3 ns, τor = 250 ps.

Fig. 3
Fig. 3

Schematic diagram of the autocorrelation by the OKG technique: B.S, beam splitter; P1–P3, polarizers; PMTs, photomultiplier tubes; L1–L6, lenses.

Fig. 4
Fig. 4

Part of the incoherent fluorescence OKG experiment. Polarizer P5 was inserted in the apparatus as shown, and the fluorescence can be collected with polarization parallel and perpendicular to the polarization of the exciting light for the sample (Rhodamine 6G solution). F, filter; other abbreviations as for Fig. 3.

Fig. 5
Fig. 5

Typical autocorrelation curve of the incoherent light from a YAG laser obtained by an OKG measurement for which CS2 liquid has been used as a Kerr medium. The experimental data in this curve are normalized and well fitted to Eq. (3).

Fig. 6
Fig. 6

(a), (b) parallel and perpendicular fluorescence decay, respectively, measured with the experimental incoherent fluorescence OKG.

Fig. 7
Fig. 7

Incoherent fluorescence anisotropy R(τ) data that result from the parallel–perpendicular polarization data.

Tables (2)

Tables Icon

Table 1 Range of τor Values Calculated with Several Values of R(0) by Fitting of Eq. (9) to the I (τ) Data of Fig. 6

Tables Icon

Table 2 Range of τor Values Calculated with Several Values of R(0) by fitting of (10) to the I (τ) Data of Fig. 6

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δn=n0°-n90°=n2I,
St  -+ G3tFτ-tdt,
G3τ=1+2 exp-πt/τcoh2,
Rt=It-ItIt+2It,
Rt=α20t5,
Rt=R0exp-t/τor,
Iτ=-τ1+2a exp-πt/τcoh2exp-γfτ-t×1+2R0exp-γorτ-tdt,
Iτ=-τ1+2a exp-πt/τcoh2exp-γfτ-t×1-R0exp-γorτ-tdt,
Ix=1+2R01/1+c/b+2ab exp-xb-xexp-πt2 expbtdt+4aR0b exp-xb+xc×-xexp-πt2 expb+ctdt,
Ix=1-R01/1+c/b+2ab exp-xb-xexp-πt2 expbtdt-2R0ab exp-xb+xc×-xexp-πt2 expb+ctdt,

Metrics