Abstract

We present experimental measurements and simulation of the spatial distribution of near-field light at the aperture of a Si micromachined near-field scanning optical microscopy (NSOM) probe. A miniature aperture at the apex of a SiO2 tip on a Si cantilever was fabricated with the low temperature oxidation and selective etching technique. An optical transmission efficiency (optical throughput) of the fabricated probe was determined to be approximately 10-2 when the aperture size was approximately 100 nm, which is several orders of magnitude higher than that for conventional optical fibers. A three-dimensional finite difference time domain (FDTD) simulation shows that the near-field light is well confined within the aperture area with a throughput of 1% for a 100-nm aperture, which is in good agreement with the measurement. The spatial distribution of the near-field light at an aperture of 300-nm diameter shows a full width at half-maximum of 250 nm with a sharp peak that is nearly 60 nm wide. The 2.4% throughput for a 300-nm aperture was estimated based on the measured spatial distribution of the near-field light that is almost the same as the experimental result. We also present the initial results of the fabrication of high throughput coaxial and surface plasmon enhancement NSOM probes.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Special issue on Near-Field Microscopy and Spectroscopy, J. Chem. Phys. 112, 7761–7872 (2000).
    [CrossRef]
  2. E. Betzig, J. K. Trautman, “Near field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
    [CrossRef] [PubMed]
  3. D. W. Pohl, D. Courjon, eds., Near Field Optics, Vol. 242 of NATO ASI Series (Kluwer Academic, Dordrecht, The Netherlands, 1993).
  4. M. Ohtsu, ed., Near-Field Nano/Atom Optics and Technology (Springer-Verlag, Tokyo, Japan, 1998).
    [CrossRef]
  5. G. A. Valaskovic, M. Holton, G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1228 (1995).
    [CrossRef] [PubMed]
  6. E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
    [CrossRef]
  7. P. N. Minh, T. Ono, M. Esashi, “Nonuniform silicon oxidation and application for the fabrication of aperture for near-field scanning optical microscopy,” Appl. Phys. Lett. 75, 4076–4078 (1999).
    [CrossRef]
  8. P. N. Minh, T. Ono, M. Esashi, “High throughput aperture near-field scanning optical microscopy,” Rev. Sci. Instrum. 71, 3111–3117 (2000).
    [CrossRef]
  9. K. S. Kunz, R. J. Luebbers, eds., The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).
  10. D. A. Christensen, “Analysis of near-field patterns including object interaction using finite-difference time-domain calculations,” Ultramicroscopy 57, 189–195 (1995).
    [CrossRef]
  11. H. Furukawa, S. Kawata, “Analysis of image formation in a near-field scanning optical microscope: effects of multiple scattering,” Opt. Commun. 132, 170–178 (1996).
    [CrossRef]
  12. H. Zhou, A. Midha, L. Bruchhaus, G. Mills, L. Donaldson, J. M. R. Weaver, “Novel scanning near-field optical microscopy/atomic force microscope probes by combined micromachining and electron-beam nanolithography,” J. Vac. Sci. Technol. B 17, 1954–1958 (1999).
    [CrossRef]
  13. M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “Nanometric aperture arrays fabricated by wet and dry etching of silicon for near-field optical storage application,” J. Vac. Sci. Technol. B 17, 2462–2466 (1999).
    [CrossRef]
  14. L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50, 4094–4106 (2000).
    [CrossRef]
  15. M. Kourogi, T. Yatsui, K. Tsutsui, J. Takahashi, M. Ohtsu, “Subwavelength-sized phase change recording with a high throughput fiber probe,” in Near-Field Optics: Physics, Devices, and Information Processing, (S. Jutamulia, M. Ohtsu, T. Asakura, eds. Proc. SPIE3791, 68–75 (1999).
  16. T. Yatsui, M. Kourogi, M. Ohtsu, “Highly efficient excitation of optical near-field on an apertured fiber probe with an asymmetric structure,” Appl. Phys. Lett. 71, 1756–1758 (1997).
    [CrossRef]
  17. U. Ch. Fischer, M. Zapletal, “The concept of a coaxial tip as a probe for scanning near-field optical microscopy and steps towards a realization,” Ultramicroscopy 42–44, 393–398 (1992).
  18. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating (Springer-Verlag, Berlin, 1988).
  19. H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. 39, 980–981 (2000).
    [CrossRef]
  20. J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–960 (2000).
    [CrossRef]

2000 (5)

P. N. Minh, T. Ono, M. Esashi, “High throughput aperture near-field scanning optical microscopy,” Rev. Sci. Instrum. 71, 3111–3117 (2000).
[CrossRef]

L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50, 4094–4106 (2000).
[CrossRef]

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. 39, 980–981 (2000).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–960 (2000).
[CrossRef]

Special issue on Near-Field Microscopy and Spectroscopy, J. Chem. Phys. 112, 7761–7872 (2000).
[CrossRef]

1999 (3)

H. Zhou, A. Midha, L. Bruchhaus, G. Mills, L. Donaldson, J. M. R. Weaver, “Novel scanning near-field optical microscopy/atomic force microscope probes by combined micromachining and electron-beam nanolithography,” J. Vac. Sci. Technol. B 17, 1954–1958 (1999).
[CrossRef]

M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “Nanometric aperture arrays fabricated by wet and dry etching of silicon for near-field optical storage application,” J. Vac. Sci. Technol. B 17, 2462–2466 (1999).
[CrossRef]

P. N. Minh, T. Ono, M. Esashi, “Nonuniform silicon oxidation and application for the fabrication of aperture for near-field scanning optical microscopy,” Appl. Phys. Lett. 75, 4076–4078 (1999).
[CrossRef]

1997 (1)

T. Yatsui, M. Kourogi, M. Ohtsu, “Highly efficient excitation of optical near-field on an apertured fiber probe with an asymmetric structure,” Appl. Phys. Lett. 71, 1756–1758 (1997).
[CrossRef]

1996 (1)

H. Furukawa, S. Kawata, “Analysis of image formation in a near-field scanning optical microscope: effects of multiple scattering,” Opt. Commun. 132, 170–178 (1996).
[CrossRef]

1995 (2)

G. A. Valaskovic, M. Holton, G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1228 (1995).
[CrossRef] [PubMed]

D. A. Christensen, “Analysis of near-field patterns including object interaction using finite-difference time-domain calculations,” Ultramicroscopy 57, 189–195 (1995).
[CrossRef]

1992 (3)

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

U. Ch. Fischer, M. Zapletal, “The concept of a coaxial tip as a probe for scanning near-field optical microscopy and steps towards a realization,” Ultramicroscopy 42–44, 393–398 (1992).

E. Betzig, J. K. Trautman, “Near field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

Atoda, N.

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. 39, 980–981 (2000).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–960 (2000).
[CrossRef]

M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “Nanometric aperture arrays fabricated by wet and dry etching of silicon for near-field optical storage application,” J. Vac. Sci. Technol. B 17, 2462–2466 (1999).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, “Near field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Bruchhaus, L.

H. Zhou, A. Midha, L. Bruchhaus, G. Mills, L. Donaldson, J. M. R. Weaver, “Novel scanning near-field optical microscopy/atomic force microscope probes by combined micromachining and electron-beam nanolithography,” J. Vac. Sci. Technol. B 17, 1954–1958 (1999).
[CrossRef]

Christensen, D. A.

D. A. Christensen, “Analysis of near-field patterns including object interaction using finite-difference time-domain calculations,” Ultramicroscopy 57, 189–195 (1995).
[CrossRef]

Donaldson, L.

H. Zhou, A. Midha, L. Bruchhaus, G. Mills, L. Donaldson, J. M. R. Weaver, “Novel scanning near-field optical microscopy/atomic force microscope probes by combined micromachining and electron-beam nanolithography,” J. Vac. Sci. Technol. B 17, 1954–1958 (1999).
[CrossRef]

Esashi, M.

P. N. Minh, T. Ono, M. Esashi, “High throughput aperture near-field scanning optical microscopy,” Rev. Sci. Instrum. 71, 3111–3117 (2000).
[CrossRef]

P. N. Minh, T. Ono, M. Esashi, “Nonuniform silicon oxidation and application for the fabrication of aperture for near-field scanning optical microscopy,” Appl. Phys. Lett. 75, 4076–4078 (1999).
[CrossRef]

Finn, P. L.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Fischer, U. Ch.

U. Ch. Fischer, M. Zapletal, “The concept of a coaxial tip as a probe for scanning near-field optical microscopy and steps towards a realization,” Ultramicroscopy 42–44, 393–398 (1992).

Fuji, H.

J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–960 (2000).
[CrossRef]

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. 39, 980–981 (2000).
[CrossRef]

Furukawa, H.

H. Furukawa, S. Kawata, “Analysis of image formation in a near-field scanning optical microscope: effects of multiple scattering,” Opt. Commun. 132, 170–178 (1996).
[CrossRef]

Hafner, C.

L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50, 4094–4106 (2000).
[CrossRef]

Holton, M.

Katayama, H.

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. 39, 980–981 (2000).
[CrossRef]

Kawata, S.

H. Furukawa, S. Kawata, “Analysis of image formation in a near-field scanning optical microscope: effects of multiple scattering,” Opt. Commun. 132, 170–178 (1996).
[CrossRef]

Kourogi, M.

T. Yatsui, M. Kourogi, M. Ohtsu, “Highly efficient excitation of optical near-field on an apertured fiber probe with an asymmetric structure,” Appl. Phys. Lett. 71, 1756–1758 (1997).
[CrossRef]

M. Kourogi, T. Yatsui, K. Tsutsui, J. Takahashi, M. Ohtsu, “Subwavelength-sized phase change recording with a high throughput fiber probe,” in Near-Field Optics: Physics, Devices, and Information Processing, (S. Jutamulia, M. Ohtsu, T. Asakura, eds. Proc. SPIE3791, 68–75 (1999).

Lee, M. B.

M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “Nanometric aperture arrays fabricated by wet and dry etching of silicon for near-field optical storage application,” J. Vac. Sci. Technol. B 17, 2462–2466 (1999).
[CrossRef]

Men, L.

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. 39, 980–981 (2000).
[CrossRef]

Midha, A.

H. Zhou, A. Midha, L. Bruchhaus, G. Mills, L. Donaldson, J. M. R. Weaver, “Novel scanning near-field optical microscopy/atomic force microscope probes by combined micromachining and electron-beam nanolithography,” J. Vac. Sci. Technol. B 17, 1954–1958 (1999).
[CrossRef]

Mills, G.

H. Zhou, A. Midha, L. Bruchhaus, G. Mills, L. Donaldson, J. M. R. Weaver, “Novel scanning near-field optical microscopy/atomic force microscope probes by combined micromachining and electron-beam nanolithography,” J. Vac. Sci. Technol. B 17, 1954–1958 (1999).
[CrossRef]

Minh, P. N.

P. N. Minh, T. Ono, M. Esashi, “High throughput aperture near-field scanning optical microscopy,” Rev. Sci. Instrum. 71, 3111–3117 (2000).
[CrossRef]

P. N. Minh, T. Ono, M. Esashi, “Nonuniform silicon oxidation and application for the fabrication of aperture for near-field scanning optical microscopy,” Appl. Phys. Lett. 75, 4076–4078 (1999).
[CrossRef]

Morrison, G. H.

Nakano, T.

J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–960 (2000).
[CrossRef]

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. 39, 980–981 (2000).
[CrossRef]

Novotny, L.

L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50, 4094–4106 (2000).
[CrossRef]

Ohtsu, M.

M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “Nanometric aperture arrays fabricated by wet and dry etching of silicon for near-field optical storage application,” J. Vac. Sci. Technol. B 17, 2462–2466 (1999).
[CrossRef]

T. Yatsui, M. Kourogi, M. Ohtsu, “Highly efficient excitation of optical near-field on an apertured fiber probe with an asymmetric structure,” Appl. Phys. Lett. 71, 1756–1758 (1997).
[CrossRef]

M. Kourogi, T. Yatsui, K. Tsutsui, J. Takahashi, M. Ohtsu, “Subwavelength-sized phase change recording with a high throughput fiber probe,” in Near-Field Optics: Physics, Devices, and Information Processing, (S. Jutamulia, M. Ohtsu, T. Asakura, eds. Proc. SPIE3791, 68–75 (1999).

Ono, T.

P. N. Minh, T. Ono, M. Esashi, “High throughput aperture near-field scanning optical microscopy,” Rev. Sci. Instrum. 71, 3111–3117 (2000).
[CrossRef]

P. N. Minh, T. Ono, M. Esashi, “Nonuniform silicon oxidation and application for the fabrication of aperture for near-field scanning optical microscopy,” Appl. Phys. Lett. 75, 4076–4078 (1999).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating (Springer-Verlag, Berlin, 1988).

Sato, A.

J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–960 (2000).
[CrossRef]

Takahashi, J.

M. Kourogi, T. Yatsui, K. Tsutsui, J. Takahashi, M. Ohtsu, “Subwavelength-sized phase change recording with a high throughput fiber probe,” in Near-Field Optics: Physics, Devices, and Information Processing, (S. Jutamulia, M. Ohtsu, T. Asakura, eds. Proc. SPIE3791, 68–75 (1999).

Tominaga, J.

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. 39, 980–981 (2000).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–960 (2000).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, “Near field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

Tsutsui, K.

M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “Nanometric aperture arrays fabricated by wet and dry etching of silicon for near-field optical storage application,” J. Vac. Sci. Technol. B 17, 2462–2466 (1999).
[CrossRef]

M. Kourogi, T. Yatsui, K. Tsutsui, J. Takahashi, M. Ohtsu, “Subwavelength-sized phase change recording with a high throughput fiber probe,” in Near-Field Optics: Physics, Devices, and Information Processing, (S. Jutamulia, M. Ohtsu, T. Asakura, eds. Proc. SPIE3791, 68–75 (1999).

Valaskovic, G. A.

Weaver, J. M. R.

H. Zhou, A. Midha, L. Bruchhaus, G. Mills, L. Donaldson, J. M. R. Weaver, “Novel scanning near-field optical microscopy/atomic force microscope probes by combined micromachining and electron-beam nanolithography,” J. Vac. Sci. Technol. B 17, 1954–1958 (1999).
[CrossRef]

Weiner, J. S.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Yatsui, T.

T. Yatsui, M. Kourogi, M. Ohtsu, “Highly efficient excitation of optical near-field on an apertured fiber probe with an asymmetric structure,” Appl. Phys. Lett. 71, 1756–1758 (1997).
[CrossRef]

M. Kourogi, T. Yatsui, K. Tsutsui, J. Takahashi, M. Ohtsu, “Subwavelength-sized phase change recording with a high throughput fiber probe,” in Near-Field Optics: Physics, Devices, and Information Processing, (S. Jutamulia, M. Ohtsu, T. Asakura, eds. Proc. SPIE3791, 68–75 (1999).

Zapletal, M.

U. Ch. Fischer, M. Zapletal, “The concept of a coaxial tip as a probe for scanning near-field optical microscopy and steps towards a realization,” Ultramicroscopy 42–44, 393–398 (1992).

Zhou, H.

H. Zhou, A. Midha, L. Bruchhaus, G. Mills, L. Donaldson, J. M. R. Weaver, “Novel scanning near-field optical microscopy/atomic force microscope probes by combined micromachining and electron-beam nanolithography,” J. Vac. Sci. Technol. B 17, 1954–1958 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

P. N. Minh, T. Ono, M. Esashi, “Nonuniform silicon oxidation and application for the fabrication of aperture for near-field scanning optical microscopy,” Appl. Phys. Lett. 75, 4076–4078 (1999).
[CrossRef]

T. Yatsui, M. Kourogi, M. Ohtsu, “Highly efficient excitation of optical near-field on an apertured fiber probe with an asymmetric structure,” Appl. Phys. Lett. 71, 1756–1758 (1997).
[CrossRef]

J. Chem. Phys. (1)

Special issue on Near-Field Microscopy and Spectroscopy, J. Chem. Phys. 112, 7761–7872 (2000).
[CrossRef]

J. Vac. Sci. Technol. B (2)

H. Zhou, A. Midha, L. Bruchhaus, G. Mills, L. Donaldson, J. M. R. Weaver, “Novel scanning near-field optical microscopy/atomic force microscope probes by combined micromachining and electron-beam nanolithography,” J. Vac. Sci. Technol. B 17, 1954–1958 (1999).
[CrossRef]

M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “Nanometric aperture arrays fabricated by wet and dry etching of silicon for near-field optical storage application,” J. Vac. Sci. Technol. B 17, 2462–2466 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (2)

H. Fuji, J. Tominaga, L. Men, T. Nakano, H. Katayama, N. Atoda, “A near-field recording and readout technology using a metallic probe in an optical disk,” Jpn. J. Appl. Phys. 39, 980–981 (2000).
[CrossRef]

J. Tominaga, H. Fuji, A. Sato, T. Nakano, N. Atoda, “The characteristics and the potential of super resolution near-field structure,” Jpn. J. Appl. Phys. 39, 957–960 (2000).
[CrossRef]

Opt. Commun. (1)

H. Furukawa, S. Kawata, “Analysis of image formation in a near-field scanning optical microscope: effects of multiple scattering,” Opt. Commun. 132, 170–178 (1996).
[CrossRef]

Phys. Rev. E (1)

L. Novotny, C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50, 4094–4106 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

P. N. Minh, T. Ono, M. Esashi, “High throughput aperture near-field scanning optical microscopy,” Rev. Sci. Instrum. 71, 3111–3117 (2000).
[CrossRef]

Science (1)

E. Betzig, J. K. Trautman, “Near field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[CrossRef] [PubMed]

Ultramicroscopy (2)

D. A. Christensen, “Analysis of near-field patterns including object interaction using finite-difference time-domain calculations,” Ultramicroscopy 57, 189–195 (1995).
[CrossRef]

U. Ch. Fischer, M. Zapletal, “The concept of a coaxial tip as a probe for scanning near-field optical microscopy and steps towards a realization,” Ultramicroscopy 42–44, 393–398 (1992).

Other (5)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating (Springer-Verlag, Berlin, 1988).

D. W. Pohl, D. Courjon, eds., Near Field Optics, Vol. 242 of NATO ASI Series (Kluwer Academic, Dordrecht, The Netherlands, 1993).

M. Ohtsu, ed., Near-Field Nano/Atom Optics and Technology (Springer-Verlag, Tokyo, Japan, 1998).
[CrossRef]

K. S. Kunz, R. J. Luebbers, eds., The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).

M. Kourogi, T. Yatsui, K. Tsutsui, J. Takahashi, M. Ohtsu, “Subwavelength-sized phase change recording with a high throughput fiber probe,” in Near-Field Optics: Physics, Devices, and Information Processing, (S. Jutamulia, M. Ohtsu, T. Asakura, eds. Proc. SPIE3791, 68–75 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Typical SEM image of the Si micromachined NSOM probe. The inset shows the SEM image of an approximately 25-nm aperture formed at the apex of the Al-coated SiO2 tip.

Fig. 2
Fig. 2

Optical throughput of the probes as a function of aperture diameter. Filled circles, experimental points; open circle, throughput estimated from the measured spatial distribution; open square, throughput estimated from the FDTD simulation.

Fig. 3
Fig. 3

Typical cross-sectional view of the micromachined tip formed by FIB milling.

Fig. 4
Fig. 4

(a) Schematic cross-sectional view of micromachined and optical fiber NSOM tips; (b) result of the three-dimensional simulation obtained with the FDTD method for a 96-nm micromachined aperture. The simulation area consisted of 200 × 200 × 130 cells, 16 nm in size, as shown in (a).

Fig. 5
Fig. 5

SEM image of an approximately 300-nm-diameter aperture that was used as a sample for determination of the optical near-field distribution.

Fig. 6
Fig. 6

(a) Optical near-field intensity measured at the 300-nm-diameter aperture shown in Fig. 5; (b) Cross section of the near-field distribution at the center of a 300-nm aperture from the solid line in (a).

Fig. 7
Fig. 7

Anomaly of an etched SiO2 at the apex of the SiO2 tip.

Fig. 8
Fig. 8

(a) Fabrication process of the coaxial NSOM; (b) schematic of the coaxial NSOM tip.

Fig. 9
Fig. 9

SEM images of the coaxial NSOM tip: (a) front view and (b) back view.

Fig. 10
Fig. 10

Schematic view of the surface plasmon NSOM.

Fig. 11
Fig. 11

(a) SEM image of the surface plasmon NSOM tip; (b) close-up view of the aperture areas. We observed two or three Ag particles on the SiN tip.

Metrics