Abstract

Laser-induced incandescence (LII) and laser elastic-scattering measurements have been obtained with subnanosecond time resolution from a propane diffusion flame. Results show that the peak and time-integrated values of the LII signal increase with increasing laser fluence to maxima at the time of the onset of significant vaporization, beyond which they both decrease rapidly with further increases in fluence. This latter behavior for the time-integrated value is known to be characteristic for a laser beam with a rectangular spatial profile and is attributed to soot mass loss from vaporization. However, there is no apparent explanation for the corresponding large decrease in the peak value. Analysis shows that the peak value occurs at the time in the laser pulse when the time-integrated fluence reaches approximately 0.2 J/cm2 and that the magnitude of the peak value is strongly dependent on the rate of energy deposition. One possible explanation for this behavior is that, at high laser fluences, a cascade ionization phenomenon leads to the formation of an absorptive plasma that strongly perturbs the LII process.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  2. C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in steady and flickering methane/air diffusion flames,” Combust. Flame 99, 723–732 (1994).
    [CrossRef]
  3. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
    [CrossRef] [PubMed]
  4. J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence imaging,” SAE paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).
  5. Y-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” SAE paper 910223 (Society of Automotive Engineers, Warrendale, Pa., 1991).
  6. J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D. I. Diesel engine using laser-induced incandescence and light scattering,” in SAE paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  7. R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
    [CrossRef]
  8. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, Ö. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” in SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).
  9. M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
    [CrossRef]
  10. I. Colbeck, B. Atkinson, Y. Johar, “The morphology and optical properties of soot produced by different fuels,” J. Aerosol Sci. 28, 715–723 (1997).
    [CrossRef]
  11. Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997).
    [CrossRef]
  12. R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
    [CrossRef]
  13. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
    [CrossRef] [PubMed]
  14. N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
    [CrossRef]
  15. C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
    [CrossRef]
  16. B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
    [CrossRef] [PubMed]
  17. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
    [CrossRef]
  18. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Plenum, New York, 1969), pp. 158–191.
  19. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leiphertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
    [CrossRef]
  20. T. Ishiguro, N. Suzuki, Y. Fujitani, H. Morimoto, “Microstructural changes of Diesel soot during oxidation,” Combust. Flame 85, 1–6 (1991).
    [CrossRef]
  21. T. Ishiguro, Y. Takatori, K. Akihama, “Microstructure of Diesel soot particles probed by electron microscopy: first observation of inner core and outer shell,” Combust. Flame 108, 231–234 (1997).
    [CrossRef]
  22. A. B. Palotás, L. C. Rainey, C. J. Feldermann, A. F. Sarofim, J. B. Vandersande, “Soot morphology: an application of image analysis in high-resolution transmission electron microscopy,” Microsc. Res. Tech. 33, 266–278 (1996).
    [CrossRef] [PubMed]
  23. H.-S. Shim, R. H. Hurt, N. Y. C. Yang, “A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons,” Carbon 38, 29–45 (2000).
    [CrossRef]
  24. B. M. Vaglieco, F. Beretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV-visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
    [CrossRef]
  25. D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” in Proceedings of the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000, paper NHTC2000–12132 (American Society of Mechanical Engineers, New York, 2000).
  26. R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” in paper AIAA-99-0640 presented at the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, New York, 1999).
  27. S. C. Lee, C. L. Tien, “Optical constants of soot in hydrocarbon flames,” in 18th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1159–1166.
    [CrossRef]
  28. T. T. Charalampopoulos, H. Chang, B. Stagg, “The effects of temperature and composition on the complex refractive index of flame soot,” Fuel 68, 1173–1179 (1989).
    [CrossRef]
  29. B. J. Stagg, T. T. Charalampopoulos, “Refractive indices of pyrolytic graphite, amorphous carbon, and flame soot in the temperature range 25 to 600 C,” Combust. Flame 94, 381–396 (1993).
    [CrossRef]
  30. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
    [CrossRef]
  31. R. A. Dobbins, C. M. Megaridis, “Absorption and scattering of light by polydisperse aggregates,” Appl. Opt. 30, 4747–4754 (1991).
    [CrossRef] [PubMed]
  32. T. L. Farias, Ü. Ö. Köylü, M. G. Carvalho, “Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates,” Appl. Opt. 35, 6560–6567 (1996).
    [CrossRef] [PubMed]
  33. Ü. Ö. Köylü, “Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: implications for soot surface growth and total emissivity,” Combust. Flame 109, 488–500 (1996).
    [CrossRef]
  34. Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
    [CrossRef]
  35. J.-S. Wu, S. S. Krishnan, G. M. Faeth, “Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 119, 230–237 (1997).
    [CrossRef]
  36. A. A. Lushnikov, A. E. Negin, “Aerosols in strong laser beams,” J. Aerosol Sci. 24, 707–735 (1993).
    [CrossRef]
  37. D. C. Smith, “Gas breakdown initiated by laser radiation interaction with aerosols and solid surfaces,” J. Appl. Phys. 48, 2217–2225 (1977).
    [CrossRef]
  38. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
    [CrossRef]

2000 (2)

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leiphertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

H.-S. Shim, R. H. Hurt, N. Y. C. Yang, “A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons,” Carbon 38, 29–45 (2000).
[CrossRef]

1999 (2)

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
[CrossRef]

1998 (1)

1997 (5)

J.-S. Wu, S. S. Krishnan, G. M. Faeth, “Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 119, 230–237 (1997).
[CrossRef]

I. Colbeck, B. Atkinson, Y. Johar, “The morphology and optical properties of soot produced by different fuels,” J. Aerosol Sci. 28, 715–723 (1997).
[CrossRef]

Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997).
[CrossRef]

T. Ishiguro, Y. Takatori, K. Akihama, “Microstructure of Diesel soot particles probed by electron microscopy: first observation of inner core and outer shell,” Combust. Flame 108, 231–234 (1997).
[CrossRef]

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
[CrossRef] [PubMed]

1996 (6)

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

A. B. Palotás, L. C. Rainey, C. J. Feldermann, A. F. Sarofim, J. B. Vandersande, “Soot morphology: an application of image analysis in high-resolution transmission electron microscopy,” Microsc. Res. Tech. 33, 266–278 (1996).
[CrossRef] [PubMed]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

T. L. Farias, Ü. Ö. Köylü, M. G. Carvalho, “Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates,” Appl. Opt. 35, 6560–6567 (1996).
[CrossRef] [PubMed]

Ü. Ö. Köylü, “Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: implications for soot surface growth and total emissivity,” Combust. Flame 109, 488–500 (1996).
[CrossRef]

1995 (2)

Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

1994 (2)

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in steady and flickering methane/air diffusion flames,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

1993 (3)

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

A. A. Lushnikov, A. E. Negin, “Aerosols in strong laser beams,” J. Aerosol Sci. 24, 707–735 (1993).
[CrossRef]

B. J. Stagg, T. T. Charalampopoulos, “Refractive indices of pyrolytic graphite, amorphous carbon, and flame soot in the temperature range 25 to 600 C,” Combust. Flame 94, 381–396 (1993).
[CrossRef]

1991 (2)

R. A. Dobbins, C. M. Megaridis, “Absorption and scattering of light by polydisperse aggregates,” Appl. Opt. 30, 4747–4754 (1991).
[CrossRef] [PubMed]

T. Ishiguro, N. Suzuki, Y. Fujitani, H. Morimoto, “Microstructural changes of Diesel soot during oxidation,” Combust. Flame 85, 1–6 (1991).
[CrossRef]

1990 (1)

B. M. Vaglieco, F. Beretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV-visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

1989 (1)

T. T. Charalampopoulos, H. Chang, B. Stagg, “The effects of temperature and composition on the complex refractive index of flame soot,” Fuel 68, 1173–1179 (1989).
[CrossRef]

1983 (1)

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

1977 (2)

D. C. Smith, “Gas breakdown initiated by laser radiation interaction with aerosols and solid surfaces,” J. Appl. Phys. 48, 2217–2225 (1977).
[CrossRef]

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

Akihama, K.

T. Ishiguro, Y. Takatori, K. Akihama, “Microstructure of Diesel soot particles probed by electron microscopy: first observation of inner core and outer shell,” Combust. Flame 108, 231–234 (1997).
[CrossRef]

Atkinson, B.

I. Colbeck, B. Atkinson, Y. Johar, “The morphology and optical properties of soot produced by different fuels,” J. Aerosol Sci. 28, 715–723 (1997).
[CrossRef]

Bader, K.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leiphertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

Beretta, F.

B. M. Vaglieco, F. Beretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV-visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

Carvalho, M. G.

T. L. Farias, Ü. Ö. Köylü, M. G. Carvalho, “Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates,” Appl. Opt. 35, 6560–6567 (1996).
[CrossRef] [PubMed]

Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

Case, M. E.

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

Chang, H.

T. T. Charalampopoulos, H. Chang, B. Stagg, “The effects of temperature and composition on the complex refractive index of flame soot,” Fuel 68, 1173–1179 (1989).
[CrossRef]

Charalampopoulos, T. T.

B. J. Stagg, T. T. Charalampopoulos, “Refractive indices of pyrolytic graphite, amorphous carbon, and flame soot in the temperature range 25 to 600 C,” Combust. Flame 94, 381–396 (1993).
[CrossRef]

T. T. Charalampopoulos, H. Chang, B. Stagg, “The effects of temperature and composition on the complex refractive index of flame soot,” Fuel 68, 1173–1179 (1989).
[CrossRef]

Chippior, W. L.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, Ö. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” in SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

Choi, M. Y.

R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
[CrossRef]

Colbeck, I.

I. Colbeck, B. Atkinson, Y. Johar, “The morphology and optical properties of soot produced by different fuels,” J. Aerosol Sci. 28, 715–723 (1997).
[CrossRef]

D’Alessio, A.

B. M. Vaglieco, F. Beretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV-visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

Dankers, S.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leiphertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

Dec, J. E.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence imaging,” SAE paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Dobbins, R. A.

R. A. Dobbins, C. M. Megaridis, “Absorption and scattering of light by polydisperse aggregates,” Appl. Opt. 30, 4747–4754 (1991).
[CrossRef] [PubMed]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

Faeth, G. M.

J.-S. Wu, S. S. Krishnan, G. M. Faeth, “Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 119, 230–237 (1997).
[CrossRef]

Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

Farias, T. L.

T. L. Farias, Ü. Ö. Köylü, M. G. Carvalho, “Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates,” Appl. Opt. 35, 6560–6567 (1996).
[CrossRef] [PubMed]

Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

Feldermann, C. J.

A. B. Palotás, L. C. Rainey, C. J. Feldermann, A. F. Sarofim, J. B. Vandersande, “Soot morphology: an application of image analysis in high-resolution transmission electron microscopy,” Microsc. Res. Tech. 33, 266–278 (1996).
[CrossRef] [PubMed]

Frank-Kamenetskii, D. A.

D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Plenum, New York, 1969), pp. 158–191.

Fujitani, Y.

T. Ishiguro, N. Suzuki, Y. Fujitani, H. Morimoto, “Microstructural changes of Diesel soot during oxidation,” Combust. Flame 85, 1–6 (1991).
[CrossRef]

Gareau, D.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, Ö. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” in SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

Greenhalgh, D. A.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Gülder, Ö. L.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, Ö. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” in SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” in Proceedings of the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000, paper NHTC2000–12132 (American Society of Mechanical Engineers, New York, 2000).

Gupta, S.

Harrington, J. E.

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in steady and flickering methane/air diffusion flames,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Hofeldt, D. L.

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

Hurt, R. H.

H.-S. Shim, R. H. Hurt, N. Y. C. Yang, “A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons,” Carbon 38, 29–45 (2000).
[CrossRef]

Ishiguro, T.

T. Ishiguro, Y. Takatori, K. Akihama, “Microstructure of Diesel soot particles probed by electron microscopy: first observation of inner core and outer shell,” Combust. Flame 108, 231–234 (1997).
[CrossRef]

T. Ishiguro, N. Suzuki, Y. Fujitani, H. Morimoto, “Microstructural changes of Diesel soot during oxidation,” Combust. Flame 85, 1–6 (1991).
[CrossRef]

Jensen, K. A.

Johar, Y.

I. Colbeck, B. Atkinson, Y. Johar, “The morphology and optical properties of soot produced by different fuels,” J. Aerosol Sci. 28, 715–723 (1997).
[CrossRef]

Kamimoto, T.

Y-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” SAE paper 910223 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Kobayashi, H.

Y-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” SAE paper 910223 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Kosaka, H.

Y-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” SAE paper 910223 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Köylü, Ü. Ö.

Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997).
[CrossRef]

T. L. Farias, Ü. Ö. Köylü, M. G. Carvalho, “Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates,” Appl. Opt. 35, 6560–6567 (1996).
[CrossRef] [PubMed]

Ü. Ö. Köylü, “Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: implications for soot surface growth and total emissivity,” Combust. Flame 109, 488–500 (1996).
[CrossRef]

Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

Krishnan, S. S.

J.-S. Wu, S. S. Krishnan, G. M. Faeth, “Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 119, 230–237 (1997).
[CrossRef]

Lee, S. C.

S. C. Lee, C. L. Tien, “Optical constants of soot in hydrocarbon flames,” in 18th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1159–1166.
[CrossRef]

Leiphertz, A.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leiphertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

Litzinger, T. A.

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D. I. Diesel engine using laser-induced incandescence and light scattering,” in SAE paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Liu, F.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, Ö. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” in SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” in Proceedings of the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000, paper NHTC2000–12132 (American Society of Mechanical Engineers, New York, 2000).

Lushnikov, A. A.

A. A. Lushnikov, A. E. Negin, “Aerosols in strong laser beams,” J. Aerosol Sci. 24, 707–735 (1993).
[CrossRef]

Martin, S. R.

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

McEnally, C. S.

Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997).
[CrossRef]

Megaridis, C. M.

Mewes, B.

Mitchell, D. L.

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D. I. Diesel engine using laser-induced incandescence and light scattering,” in SAE paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Morimoto, H.

T. Ishiguro, N. Suzuki, Y. Fujitani, H. Morimoto, “Microstructural changes of Diesel soot during oxidation,” Combust. Flame 85, 1–6 (1991).
[CrossRef]

Negin, A. E.

A. A. Lushnikov, A. E. Negin, “Aerosols in strong laser beams,” J. Aerosol Sci. 24, 707–735 (1993).
[CrossRef]

Neill, W. S.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, Ö. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” in SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

Ni, T.

Palotás, A. B.

A. B. Palotás, L. C. Rainey, C. J. Feldermann, A. F. Sarofim, J. B. Vandersande, “Soot morphology: an application of image analysis in high-resolution transmission electron microscopy,” Microsc. Res. Tech. 33, 266–278 (1996).
[CrossRef] [PubMed]

Pfefferle, L. D.

Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997).
[CrossRef]

Pinson, J. A.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D. I. Diesel engine using laser-induced incandescence and light scattering,” in SAE paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Rainey, L. C.

A. B. Palotás, L. C. Rainey, C. J. Feldermann, A. F. Sarofim, J. B. Vandersande, “Soot morphology: an application of image analysis in high-resolution transmission electron microscopy,” Microsc. Res. Tech. 33, 266–278 (1996).
[CrossRef] [PubMed]

Rosner, D. E.

Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997).
[CrossRef]

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D. I. Diesel engine using laser-induced incandescence and light scattering,” in SAE paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Sarofim, A. F.

A. B. Palotás, L. C. Rainey, C. J. Feldermann, A. F. Sarofim, J. B. Vandersande, “Soot morphology: an application of image analysis in high-resolution transmission electron microscopy,” Microsc. Res. Tech. 33, 266–278 (1996).
[CrossRef] [PubMed]

Sawchuk, R. A.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, Ö. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” in SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

Schraml, S.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leiphertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

Seitzman, J. M.

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
[CrossRef] [PubMed]

R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” in paper AIAA-99-0640 presented at the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, New York, 1999).

Semerjian, H. G.

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Shaddix, C. R.

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in steady and flickering methane/air diffusion flames,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Shim, H.-S.

H.-S. Shim, R. H. Hurt, N. Y. C. Yang, “A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons,” Carbon 38, 29–45 (2000).
[CrossRef]

Siebers, D. L.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence imaging,” SAE paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Smallwood, G. J.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, Ö. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” in SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” in Proceedings of the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000, paper NHTC2000–12132 (American Society of Mechanical Engineers, New York, 2000).

Smith, D. C.

D. C. Smith, “Gas breakdown initiated by laser radiation interaction with aerosols and solid surfaces,” J. Appl. Phys. 48, 2217–2225 (1977).
[CrossRef]

Smyth, K. C.

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in steady and flickering methane/air diffusion flames,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Snelling, D. R.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, Ö. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” in SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” in Proceedings of the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000, paper NHTC2000–12132 (American Society of Mechanical Engineers, New York, 2000).

Stagg, B.

T. T. Charalampopoulos, H. Chang, B. Stagg, “The effects of temperature and composition on the complex refractive index of flame soot,” Fuel 68, 1173–1179 (1989).
[CrossRef]

Stagg, B. J.

B. J. Stagg, T. T. Charalampopoulos, “Refractive indices of pyrolytic graphite, amorphous carbon, and flame soot in the temperature range 25 to 600 C,” Combust. Flame 94, 381–396 (1993).
[CrossRef]

Suzuki, N.

T. Ishiguro, N. Suzuki, Y. Fujitani, H. Morimoto, “Microstructural changes of Diesel soot during oxidation,” Combust. Flame 85, 1–6 (1991).
[CrossRef]

Tait, N. P.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Takatori, Y.

T. Ishiguro, Y. Takatori, K. Akihama, “Microstructure of Diesel soot particles probed by electron microscopy: first observation of inner core and outer shell,” Combust. Flame 108, 231–234 (1997).
[CrossRef]

Tien, C. L.

S. C. Lee, C. L. Tien, “Optical constants of soot in hydrocarbon flames,” in 18th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1159–1166.
[CrossRef]

Vaglieco, B. M.

B. M. Vaglieco, F. Beretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV-visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
[CrossRef]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
[CrossRef]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Vandersande, J. B.

A. B. Palotás, L. C. Rainey, C. J. Feldermann, A. F. Sarofim, J. B. Vandersande, “Soot morphology: an application of image analysis in high-resolution transmission electron microscopy,” Microsc. Res. Tech. 33, 266–278 (1996).
[CrossRef] [PubMed]

Wainner, R. T.

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” in paper AIAA-99-0640 presented at the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, New York, 1999).

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Will, S.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leiphertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

Won, Y-H.

Y-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” SAE paper 910223 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Wu, J.-S.

J.-S. Wu, S. S. Krishnan, G. M. Faeth, “Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 119, 230–237 (1997).
[CrossRef]

Yang, N. Y. C.

H.-S. Shim, R. H. Hurt, N. Y. C. Yang, “A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons,” Carbon 38, 29–45 (2000).
[CrossRef]

zur Loye, A. O.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence imaging,” SAE paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Aerosol Sci. Technol. (1)

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in Diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

AIAA J. (1)

R. T. Wainner, J. M. Seitzman, S. R. Martin, “Soot measurements in a simulated engine exhaust using laser-induced incandescence,” AIAA J. 37, 738–743 (1999).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (1)

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Carbon (2)

R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
[CrossRef]

H.-S. Shim, R. H. Hurt, N. Y. C. Yang, “A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons,” Carbon 38, 29–45 (2000).
[CrossRef]

Combust. Flame (11)

B. M. Vaglieco, F. Beretta, A. D’Alessio, “In situ evaluation of the soot refractive index in the UV-visible from the measurement of the scattering and extinction coefficients in rich flames,” Combust. Flame 79, 259–271 (1990).
[CrossRef]

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leiphertz, “Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

T. Ishiguro, N. Suzuki, Y. Fujitani, H. Morimoto, “Microstructural changes of Diesel soot during oxidation,” Combust. Flame 85, 1–6 (1991).
[CrossRef]

T. Ishiguro, Y. Takatori, K. Akihama, “Microstructure of Diesel soot particles probed by electron microscopy: first observation of inner core and outer shell,” Combust. Flame 108, 231–234 (1997).
[CrossRef]

Ü. Ö. Köylü, “Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: implications for soot surface growth and total emissivity,” Combust. Flame 109, 488–500 (1996).
[CrossRef]

Ü. Ö. Köylü, G. M. Faeth, T. L. Farias, M. G. Carvalho, “Fractal and projected structure properties of soot aggregates,” Combust. Flame 100, 621–633 (1995).
[CrossRef]

B. J. Stagg, T. T. Charalampopoulos, “Refractive indices of pyrolytic graphite, amorphous carbon, and flame soot in the temperature range 25 to 600 C,” Combust. Flame 94, 381–396 (1993).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

Ü. Ö. Köylü, C. S. McEnally, D. E. Rosner, L. D. Pfefferle, “Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique,” Combust. Flame 110, 494–507 (1997).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

C. R. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in steady and flickering methane/air diffusion flames,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Fuel (1)

T. T. Charalampopoulos, H. Chang, B. Stagg, “The effects of temperature and composition on the complex refractive index of flame soot,” Fuel 68, 1173–1179 (1989).
[CrossRef]

J. Aerosol Sci. (2)

I. Colbeck, B. Atkinson, Y. Johar, “The morphology and optical properties of soot produced by different fuels,” J. Aerosol Sci. 28, 715–723 (1997).
[CrossRef]

A. A. Lushnikov, A. E. Negin, “Aerosols in strong laser beams,” J. Aerosol Sci. 24, 707–735 (1993).
[CrossRef]

J. Appl. Phys. (2)

D. C. Smith, “Gas breakdown initiated by laser radiation interaction with aerosols and solid surfaces,” J. Appl. Phys. 48, 2217–2225 (1977).
[CrossRef]

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

J. Heat Transfer (1)

J.-S. Wu, S. S. Krishnan, G. M. Faeth, “Refractive indices at visible wavelengths of soot emitted from buoyant turbulent diffusion flames,” J. Heat Transfer 119, 230–237 (1997).
[CrossRef]

Microsc. Res. Tech. (1)

A. B. Palotás, L. C. Rainey, C. J. Feldermann, A. F. Sarofim, J. B. Vandersande, “Soot morphology: an application of image analysis in high-resolution transmission electron microscopy,” Microsc. Res. Tech. 33, 266–278 (1996).
[CrossRef] [PubMed]

Other (8)

D. R. Snelling, F. Liu, G. J. Smallwood, Ö. L. Gülder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” in Proceedings of the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000, paper NHTC2000–12132 (American Society of Mechanical Engineers, New York, 2000).

R. T. Wainner, J. M. Seitzman, “Soot diagnostics using laser-induced incandescence in flames and exhaust flows,” in paper AIAA-99-0640 presented at the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 11–14 January 1999 (American Institute of Aeronautics and Astronautics, New York, 1999).

S. C. Lee, C. L. Tien, “Optical constants of soot in hydrocarbon flames,” in 18th Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1981), pp. 1159–1166.
[CrossRef]

D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Plenum, New York, 1969), pp. 158–191.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, W. S. Neill, D. Gareau, W. L. Chippior, F. Liu, Ö. L. Gülder, “Particulate matter measurements in a Diesel engine exhaust by laser-induced incandescence and the standard gravimetric procedure,” in SAE paper 1999-01-3653 (Society of Automotive Engineers, Warrendale, Pa., 1999).

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D. I. Diesel engine using 2-D laser-induced incandescence imaging,” SAE paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Y-H. Won, T. Kamimoto, H. Kobayashi, H. Kosaka, “2-D soot visualization in unsteady spray flame by means of laser sheet scattering technique,” SAE paper 910223 (Society of Automotive Engineers, Warrendale, Pa., 1991).

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, “Quantitative, planar soot measurements in a D. I. Diesel engine using laser-induced incandescence and light scattering,” in SAE paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup: HWP, half-wave plate; TFP, thin-film polarizer; NDF, neutral-density filter; PD, photodiode; LPF, long-wave-pass filter; BPF, bandpass filter.

Fig. 2
Fig. 2

Time-resolved LII signals (average of 400 events) for laser fluences of 0.02, 0.04, 0.06, 0.10, 0.12, 0.20, 0.32, 0.45, 0.72, 1.26, and 2.48 J/cm2. The bold dotted curve is the LES signal (arbitrary units) from the LII probe volume.

Fig. 3
Fig. 3

Time-resolved LES signals (average of 400 events) for laser fluences of 0.02, 0.04, 0.06, 0.10, 0.12, 0.20, 0.32, 0.45, 0.72, 1.26, and 2.48 J/cm2.

Fig. 4
Fig. 4

Time-averaged LII signals for various averaging periods as a function of laser fluence.

Fig. 5
Fig. 5

Particle volume fraction change inferred from laser beam extinction measurements, LII, and LES measurements by use of Rayleigh and RDG PFA theory.

Fig. 6
Fig. 6

Instantaneous maximum LII signal LIImax (normalized at F*), particle volume fraction change inferred from the instantaneous LES at LIImax, and the partial fluence at the time of LIImax.

Fig. 7
Fig. 7

Instantaneous LII signal at various levels of partial laser fluence. The dashed curve is the result from Fig. 6 for LIImax.

Fig. 8
Fig. 8

Instantanous relative particle volume fraction inferred from LES for various levels of partial laser fluence.

Fig. 9
Fig. 9

Time-resolved measurements of laser intensity, LES, and LII, and values of V/ V 0 inferred from the LES signal for a laser fluence of 0.72 J/cm2.

Fig. 10
Fig. 10

Particle volume fraction reduction V/ V 0 as a function of the partial laser fluence (log10 scale) for different values of laser fluence (total pulse).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

VVmax=lnI/I0lnI/I0max,
Ī=I-I0lnI/I0.
dp  Cscat90°Cabs1/3-Df,
Cabs=-lnI/I0Nnl,
Cscat90°=Sscat90°NnlĪ,
V  Sscat90°I0-I1.36.
V  ILESILIImax0.5,
VtV0=ηtη00.5=1η0ILEStIt0.5,

Metrics