Abstract

We investigated various factors that influence the transmission of high-density and high-bandwidth signals propagated through fiber image guides. The effects of signal power uniformity, optical cross talk, mode dispersion, and modal noise were considered. A model for power uniformity and optical cross talk is provided that we used to evaluate the channel density of several coupling modes. Also, modal noise was experimentally measured for several conditions of coupling to the fiber image guide. A commercially available fiber image guide was evaluated in the context of these performance considerations and was experimentally tested. The resultant minimum signal channel based on these criteria was found to consist of three fiber elements. The limit on transmission length that is due to modal dispersion was estimated at 1.65 m at 2.5-Gbits/s and at 42 cm at 10-Gbits/s data rates. Optical cross talk and modal noise were found to place a lower limit on the signal channel density. These characteristics compare favorably with electrical interconnect densities that are projected for tape automated bonding and flip-chip bonding techniques used at the chip-to-module and chip-to-board packaging levels.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Chiarulli, S. P. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper OWB3–1.
  2. H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
    [CrossRef]
  3. K. Tatah, D. Filkins, B. Greiner, M. Robinson, “Performance measurements of fiber imaging guides and fiber bundles in optical interconnect applications,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 115–117.
  4. T. Maj, A. Kirk, D. Plant, J. Ahadian, C. Fonstad, K. Lear, K. Tatah, M. Robinson, J. A. Trezza, “Interconnection of a 2D VCSEL array to a receiver array via a fiber image guide,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper PDP3.
  5. D. M. Chiarulli, S. P. Levitan, P. Derr, R. Hofmann, B. Greiner, M. Robinson, “Demonstration of a multichannel optical interconnection by use of imaging fiber bundles butt coupled to optoelectronic circuits,” Appl. Opt. 39, 698–703 (2000).
    [CrossRef]
  6. T. Maj, A. G. Kirk, D. V. Plant, J. F. Ahadian, C. G. Fonstad, K. L. Lear, K. Tatah, M. S. Robinson, J. A. Trezza, “Interconnection of a two-dimensional array of vertical-cavity surface emitting lasers to a receiver array by means of a fiber image guide,” Appl. Opt. 39, 683–689 (2000).
    [CrossRef]
  7. G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, New York, 1991), p. 44.
  8. C. R. Pollock, Fundamentals of Optoelectronics (Irwin, Chicago, Ill., 1995), p. 153.
  9. E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, L. A. Coldren, “Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses,” Appl. Opt. 37, 2811–2821 (1998).
    [CrossRef]
  10. L. Kazovsky, S. Benedetto, A. E. Wilner, Optical Fiber Communication Systems (Artech House, Boston, Mass., 1996), p. 33.
  11. R. E. Epworth, “The phenomenon of modal noise in analogue and digital optical fiber systems,” in Proceedings of the Fourth European Conference on Optical Communications (International Institute of Communications, Genoa, Italy, 1978), pp. 492–501.
  12. R. Dandliker, A. Bertholds, F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. LT-3, 7–12 (1985).
    [CrossRef]
  13. D. M. Kuchta, C. J. Mahon, “Mode selective loss penalties in VCSEL optical fiber transmission links,” IEEE Photon. Technol. Lett. 6, 288–290 (1994).
    [CrossRef]
  14. C. L. Chua, R. L. Thorton, D. W. Treat, R. M. Donaldson, “Independently addressable VCSEL arrays on 3-µm pitch,” IEEE Photon. Technol. Lett. 10, 917–919 (1998).
    [CrossRef]
  15. Semiconductor Industry Association, The National Technology Roadmap for Semiconductors Technology Needs, (Semiconductor Industry Association, San Jose, Calif., 1997).

2000 (2)

1998 (2)

1997 (1)

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

1994 (1)

D. M. Kuchta, C. J. Mahon, “Mode selective loss penalties in VCSEL optical fiber transmission links,” IEEE Photon. Technol. Lett. 6, 288–290 (1994).
[CrossRef]

1985 (1)

R. Dandliker, A. Bertholds, F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. LT-3, 7–12 (1985).
[CrossRef]

Ahadian, J.

T. Maj, A. Kirk, D. Plant, J. Ahadian, C. Fonstad, K. Lear, K. Tatah, M. Robinson, J. A. Trezza, “Interconnection of a 2D VCSEL array to a receiver array via a fiber image guide,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper PDP3.

Ahadian, J. F.

Benedetto, S.

L. Kazovsky, S. Benedetto, A. E. Wilner, Optical Fiber Communication Systems (Artech House, Boston, Mass., 1996), p. 33.

Bertholds, A.

R. Dandliker, A. Bertholds, F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. LT-3, 7–12 (1985).
[CrossRef]

Bertilsson, K.

Chiarulli, D. M.

D. M. Chiarulli, S. P. Levitan, P. Derr, R. Hofmann, B. Greiner, M. Robinson, “Demonstration of a multichannel optical interconnection by use of imaging fiber bundles butt coupled to optoelectronic circuits,” Appl. Opt. 39, 698–703 (2000).
[CrossRef]

D. M. Chiarulli, S. P. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper OWB3–1.

Chua, C. L.

C. L. Chua, R. L. Thorton, D. W. Treat, R. M. Donaldson, “Independently addressable VCSEL arrays on 3-µm pitch,” IEEE Photon. Technol. Lett. 10, 917–919 (1998).
[CrossRef]

Coldren, L. A.

Dandliker, R.

R. Dandliker, A. Bertholds, F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. LT-3, 7–12 (1985).
[CrossRef]

Derr, P.

D. M. Chiarulli, S. P. Levitan, P. Derr, R. Hofmann, B. Greiner, M. Robinson, “Demonstration of a multichannel optical interconnection by use of imaging fiber bundles butt coupled to optoelectronic circuits,” Appl. Opt. 39, 698–703 (2000).
[CrossRef]

D. M. Chiarulli, S. P. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper OWB3–1.

Donaldson, R. M.

C. L. Chua, R. L. Thorton, D. W. Treat, R. M. Donaldson, “Independently addressable VCSEL arrays on 3-µm pitch,” IEEE Photon. Technol. Lett. 10, 917–919 (1998).
[CrossRef]

Epworth, R. E.

R. E. Epworth, “The phenomenon of modal noise in analogue and digital optical fiber systems,” in Proceedings of the Fourth European Conference on Optical Communications (International Institute of Communications, Genoa, Italy, 1978), pp. 492–501.

Filkins, D.

K. Tatah, D. Filkins, B. Greiner, M. Robinson, “Performance measurements of fiber imaging guides and fiber bundles in optical interconnect applications,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 115–117.

Fonstad, C.

T. Maj, A. Kirk, D. Plant, J. Ahadian, C. Fonstad, K. Lear, K. Tatah, M. Robinson, J. A. Trezza, “Interconnection of a 2D VCSEL array to a receiver array via a fiber image guide,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper PDP3.

Fonstad, C. G.

Greiner, B.

D. M. Chiarulli, S. P. Levitan, P. Derr, R. Hofmann, B. Greiner, M. Robinson, “Demonstration of a multichannel optical interconnection by use of imaging fiber bundles butt coupled to optoelectronic circuits,” Appl. Opt. 39, 698–703 (2000).
[CrossRef]

K. Tatah, D. Filkins, B. Greiner, M. Robinson, “Performance measurements of fiber imaging guides and fiber bundles in optical interconnect applications,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 115–117.

D. M. Chiarulli, S. P. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper OWB3–1.

Hofmann, R.

Kajita, M.

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Kazovsky, L.

L. Kazovsky, S. Benedetto, A. E. Wilner, Optical Fiber Communication Systems (Artech House, Boston, Mass., 1996), p. 33.

Keiser, G.

G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, New York, 1991), p. 44.

Kirk, A.

T. Maj, A. Kirk, D. Plant, J. Ahadian, C. Fonstad, K. Lear, K. Tatah, M. Robinson, J. A. Trezza, “Interconnection of a 2D VCSEL array to a receiver array via a fiber image guide,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper PDP3.

Kirk, A. G.

Kosaka, H.

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Kuchta, D. M.

D. M. Kuchta, C. J. Mahon, “Mode selective loss penalties in VCSEL optical fiber transmission links,” IEEE Photon. Technol. Lett. 6, 288–290 (1994).
[CrossRef]

Lear, K.

T. Maj, A. Kirk, D. Plant, J. Ahadian, C. Fonstad, K. Lear, K. Tatah, M. Robinson, J. A. Trezza, “Interconnection of a 2D VCSEL array to a receiver array via a fiber image guide,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper PDP3.

Lear, K. L.

Levitan, S. P.

D. M. Chiarulli, S. P. Levitan, P. Derr, R. Hofmann, B. Greiner, M. Robinson, “Demonstration of a multichannel optical interconnection by use of imaging fiber bundles butt coupled to optoelectronic circuits,” Appl. Opt. 39, 698–703 (2000).
[CrossRef]

D. M. Chiarulli, S. P. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper OWB3–1.

Li, Y.

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Louderback, D. A.

Mahon, C. J.

D. M. Kuchta, C. J. Mahon, “Mode selective loss penalties in VCSEL optical fiber transmission links,” IEEE Photon. Technol. Lett. 6, 288–290 (1994).
[CrossRef]

Maj, T.

T. Maj, A. G. Kirk, D. V. Plant, J. F. Ahadian, C. G. Fonstad, K. L. Lear, K. Tatah, M. S. Robinson, J. A. Trezza, “Interconnection of a two-dimensional array of vertical-cavity surface emitting lasers to a receiver array by means of a fiber image guide,” Appl. Opt. 39, 683–689 (2000).
[CrossRef]

T. Maj, A. Kirk, D. Plant, J. Ahadian, C. Fonstad, K. Lear, K. Tatah, M. Robinson, J. A. Trezza, “Interconnection of a 2D VCSEL array to a receiver array via a fiber image guide,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper PDP3.

Maystre, F.

R. Dandliker, A. Bertholds, F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. LT-3, 7–12 (1985).
[CrossRef]

Menon, R.

D. M. Chiarulli, S. P. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper OWB3–1.

Plant, D.

T. Maj, A. Kirk, D. Plant, J. Ahadian, C. Fonstad, K. Lear, K. Tatah, M. Robinson, J. A. Trezza, “Interconnection of a 2D VCSEL array to a receiver array via a fiber image guide,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper PDP3.

Plant, D. V.

Pollock, C. R.

C. R. Pollock, Fundamentals of Optoelectronics (Irwin, Chicago, Ill., 1995), p. 153.

Robinson, M.

D. M. Chiarulli, S. P. Levitan, P. Derr, R. Hofmann, B. Greiner, M. Robinson, “Demonstration of a multichannel optical interconnection by use of imaging fiber bundles butt coupled to optoelectronic circuits,” Appl. Opt. 39, 698–703 (2000).
[CrossRef]

T. Maj, A. Kirk, D. Plant, J. Ahadian, C. Fonstad, K. Lear, K. Tatah, M. Robinson, J. A. Trezza, “Interconnection of a 2D VCSEL array to a receiver array via a fiber image guide,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper PDP3.

D. M. Chiarulli, S. P. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper OWB3–1.

K. Tatah, D. Filkins, B. Greiner, M. Robinson, “Performance measurements of fiber imaging guides and fiber bundles in optical interconnect applications,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 115–117.

Robinson, M. S.

Strzelecka, E. M.

Sugimoto, Y.

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

Tatah, K.

T. Maj, A. G. Kirk, D. V. Plant, J. F. Ahadian, C. G. Fonstad, K. L. Lear, K. Tatah, M. S. Robinson, J. A. Trezza, “Interconnection of a two-dimensional array of vertical-cavity surface emitting lasers to a receiver array by means of a fiber image guide,” Appl. Opt. 39, 683–689 (2000).
[CrossRef]

T. Maj, A. Kirk, D. Plant, J. Ahadian, C. Fonstad, K. Lear, K. Tatah, M. Robinson, J. A. Trezza, “Interconnection of a 2D VCSEL array to a receiver array via a fiber image guide,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper PDP3.

K. Tatah, D. Filkins, B. Greiner, M. Robinson, “Performance measurements of fiber imaging guides and fiber bundles in optical interconnect applications,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 115–117.

Thibeault, B. J.

Thompson, G. B.

Thorton, R. L.

C. L. Chua, R. L. Thorton, D. W. Treat, R. M. Donaldson, “Independently addressable VCSEL arrays on 3-µm pitch,” IEEE Photon. Technol. Lett. 10, 917–919 (1998).
[CrossRef]

Treat, D. W.

C. L. Chua, R. L. Thorton, D. W. Treat, R. M. Donaldson, “Independently addressable VCSEL arrays on 3-µm pitch,” IEEE Photon. Technol. Lett. 10, 917–919 (1998).
[CrossRef]

Trezza, J. A.

T. Maj, A. G. Kirk, D. V. Plant, J. F. Ahadian, C. G. Fonstad, K. L. Lear, K. Tatah, M. S. Robinson, J. A. Trezza, “Interconnection of a two-dimensional array of vertical-cavity surface emitting lasers to a receiver array by means of a fiber image guide,” Appl. Opt. 39, 683–689 (2000).
[CrossRef]

T. Maj, A. Kirk, D. Plant, J. Ahadian, C. Fonstad, K. Lear, K. Tatah, M. Robinson, J. A. Trezza, “Interconnection of a 2D VCSEL array to a receiver array via a fiber image guide,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper PDP3.

Wattanapongsakorn, N.

D. M. Chiarulli, S. P. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper OWB3–1.

Wilner, A. E.

L. Kazovsky, S. Benedetto, A. E. Wilner, Optical Fiber Communication Systems (Artech House, Boston, Mass., 1996), p. 33.

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (3)

H. Kosaka, M. Kajita, Y. Li, Y. Sugimoto, “A two-dimensional optical parallel transmission using a vertical-cavity surface emitting laser array module and an image fiber,” IEEE Photon. Technol. Lett. 9, 253–255 (1997).
[CrossRef]

D. M. Kuchta, C. J. Mahon, “Mode selective loss penalties in VCSEL optical fiber transmission links,” IEEE Photon. Technol. Lett. 6, 288–290 (1994).
[CrossRef]

C. L. Chua, R. L. Thorton, D. W. Treat, R. M. Donaldson, “Independently addressable VCSEL arrays on 3-µm pitch,” IEEE Photon. Technol. Lett. 10, 917–919 (1998).
[CrossRef]

J. Lightwave Technol. (1)

R. Dandliker, A. Bertholds, F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol. LT-3, 7–12 (1985).
[CrossRef]

Other (8)

D. M. Chiarulli, S. P. Levitan, P. Derr, R. Menon, N. Wattanapongsakorn, B. Greiner, M. Robinson, “Multichannel optical interconnections using imaging fiber bundles,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper OWB3–1.

Semiconductor Industry Association, The National Technology Roadmap for Semiconductors Technology Needs, (Semiconductor Industry Association, San Jose, Calif., 1997).

K. Tatah, D. Filkins, B. Greiner, M. Robinson, “Performance measurements of fiber imaging guides and fiber bundles in optical interconnect applications,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 115–117.

T. Maj, A. Kirk, D. Plant, J. Ahadian, C. Fonstad, K. Lear, K. Tatah, M. Robinson, J. A. Trezza, “Interconnection of a 2D VCSEL array to a receiver array via a fiber image guide,” in Optics in Computing, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper PDP3.

L. Kazovsky, S. Benedetto, A. E. Wilner, Optical Fiber Communication Systems (Artech House, Boston, Mass., 1996), p. 33.

R. E. Epworth, “The phenomenon of modal noise in analogue and digital optical fiber systems,” in Proceedings of the Fourth European Conference on Optical Communications (International Institute of Communications, Genoa, Italy, 1978), pp. 492–501.

G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, New York, 1991), p. 44.

C. R. Pollock, Fundamentals of Optoelectronics (Irwin, Chicago, Ill., 1995), p. 153.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Illustration of the FIG bundle characteristics. (a) 1.9-mm-diameter FIG wrapped around a 12-mm-diameter post. (b) Unsheathed section of the FIG, showing the strands of fiber cores after the acid-soluble glass is removed. (c) Magnified image of the end face of an illuminated FIG. The multiple transmission modes and the hexagonal structure of the fiber element spacing are evident.

Fig. 2
Fig. 2

Calculated power transmitted through the FIG for the center of the incident beam aligned (sa) and misaligned (ss) with the center of a fiber element of the FIG.

Fig. 3
Fig. 3

(a) Optical power coupled into one, two, three, four, and seven fiber elements as a function of incident Gaussian beam radius. (b) Optical cross-talk power from adjacent channels with one, two, three, four, and seven fiber elements into a signal channel with similar numbers of fiber elements.

Fig. 4
Fig. 4

Calculation of the maximum optical path length (L × n 1) that can transmit data at the indicated data rates as a function of NA/n 1.

Fig. 5
Fig. 5

Eye diagram of a signal transmitted through a 1-m length of FIG at 500 MHz. The signal is generated by an 830-nm laser diode coupled to a 62.5-µm-core telecommunication fiber and then butt coupled to the FIG.

Fig. 6
Fig. 6

Images of light coupled from a 632.8-nm He–Ne laser to a 4-µm-diameter core fiber and then to a FIG array. (a) The probe fiber is aligned with a fiber element of the FIG and is illuminating odd combinations of fiber elements. (b) The probe fiber is aligned between two fiber elements of the FIG array and is illuminating even numbers of fiber elements. The distances show the separation distance between the probe fiber and the end face of the FIG.

Fig. 7
Fig. 7

Experimental optical power coupled to the FIG array from a 5-µm-diameter probe fiber as a function of the beam radius. Results are shown for the fiber aligned to the center of a fiber element and for the fiber aligned between two fiber elements.

Fig. 8
Fig. 8

Image of the beams coupled from three VCSELs of an array on 250-µm centers. The 850-nm VCSEL elements are approximately 400–500 µm from the end face of the FIG.

Fig. 9
Fig. 9

Schematic showing the system used to measure noise in the signal transmitted by different groups of fibers in the FIG array. The 50-µm core-diameter multimode fiber (MMF) serves as a fixed aperture. The lateral translation of this fiber relative to the axis of the FIG array introduces increasing levels of MSL or spatial filtering. Wave Gen., wave generator; clk, clock; Attn., attenuator; Rx Amp, receiver amplifier; O-Scope, oscilloscope.

Fig. 10
Fig. 10

(a) Variance in the transmitted signal’s voltage after the optical signal passes through several numbers of fiber elements as a function of lateral misalignment of the collection fiber. A noticeable increase in this variation is observed when data are coupled to a single fiber element. (b) Corresponding signal-to-noise ratio for the conditions of (a). SNR, signal-to-noise ratio.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V=2πaλ NA=2πaλn12-n22,
Pm,n=I0 exp-2r0m, n2w0202πr=0aexp-2r2-2rr0m, ncosθ/w02rdrdθ.
Pm,n=I0 exp-2r0m, n2w02xyexp-2x2+y2-2xr0m, n/w02dxdy,
PTotal=m,n Pm,n.
Δτ=Ln1c1-cosαcosα,

Metrics