Abstract

Narrow-bandwidth holographic reflection filters are demonstrated that use volume gratings in 100-µm-thick photopolymer films. A full width at half-maximum of 0.09 nm can be achieved with ∼35% peak reflectance near the 900-nm region. Detailed fabrication procedures and filter performances are described.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley-Interscience, New York, 1988), Chap. 7, pp. 254–294.
  2. G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [CrossRef] [PubMed]
  3. I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).
  4. J. Söchtig, “Ti:LiNbO3 stripe waveguide Bragg reflector gratings,” Electron. Lett. 24, 844–845 (1988).
    [CrossRef]
  5. D. E. Sheat, J. S. Leggatt, D. J. McCartney, “Position tunable volume reflection gratings for narrowband filtering applications (FWHM < 5 nm) in optical fiber systems,” Electron. Lett. 26, 42–44 (1990).
    [CrossRef]
  6. R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
    [CrossRef]
  7. R. Müller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
    [CrossRef]
  8. G. Rakuljic, V. Leyva, “Volume holographic narrow-band optical filter,” Opt. Lett. 18, 459–461 (1993).
    [CrossRef] [PubMed]
  9. A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995).
    [CrossRef] [PubMed]
  10. T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
    [CrossRef]
  11. W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
    [CrossRef]
  12. K. Curtis, D. Psaltis, “Characterization of the Dupont photopolymer for three-dimensional holographic storage,” Appl. Opt. 33, 5396–5399 (1994).
    [CrossRef] [PubMed]
  13. K. Curtis, D. Psaltis, “Recording of multiple holograms in photopolymer films,” Appl. Opt. 31, 7425–7428 (1992).
    [CrossRef] [PubMed]
  14. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic storage,” Opt. Lett. 24, 487–489 (1999).
    [CrossRef]
  15. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  16. G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
    [CrossRef]
  17. C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
    [CrossRef]

1999

1998

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

1997

G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

1996

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

1995

1994

K. Curtis, D. Psaltis, “Characterization of the Dupont photopolymer for three-dimensional holographic storage,” Appl. Opt. 33, 5396–5399 (1994).
[CrossRef] [PubMed]

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

R. Müller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

1993

1992

1990

D. E. Sheat, J. S. Leggatt, D. J. McCartney, “Position tunable volume reflection gratings for narrowband filtering applications (FWHM < 5 nm) in optical fiber systems,” Electron. Lett. 26, 42–44 (1990).
[CrossRef]

1989

1988

J. Söchtig, “Ti:LiNbO3 stripe waveguide Bragg reflector gratings,” Electron. Lett. 24, 844–845 (1988).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Alvarez-Bravo, J. V.

R. Müller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

Arizmendi, L.

R. Müller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Bennion, I.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Cabrera, J. M.

R. Müller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Chen, R. T.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Curtis, K.

Dhar, L.

Doran, N. J.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Fu, Z.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Gambogi, W. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
[CrossRef]

Glenn, W. H.

Hale, A.

Katz, H. E.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Leggatt, J. S.

D. E. Sheat, J. S. Leggatt, D. J. McCartney, “Position tunable volume reflection gratings for narrowband filtering applications (FWHM < 5 nm) in optical fiber systems,” Electron. Lett. 26, 42–44 (1990).
[CrossRef]

Leyva, V.

Liu, J.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

McCartney, D. J.

D. E. Sheat, J. S. Leggatt, D. J. McCartney, “Position tunable volume reflection gratings for narrowband filtering applications (FWHM < 5 nm) in optical fiber systems,” Electron. Lett. 26, 42–44 (1990).
[CrossRef]

Meltz, G.

Montemezzani, G.

G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Morey, W. W.

Müller, R.

R. Müller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Orlov, S.

Psaltis, D.

Rakuljic, G.

Santos, M. T.

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Schilling, F. C.

Schilling, M. L.

Schmieg, J. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Schnoes, M. G.

Sheat, D. E.

D. E. Sheat, J. S. Leggatt, D. J. McCartney, “Position tunable volume reflection gratings for narrowband filtering applications (FWHM < 5 nm) in optical fiber systems,” Electron. Lett. 26, 42–44 (1990).
[CrossRef]

Söchtig, J.

J. Söchtig, “Ti:LiNbO3 stripe waveguide Bragg reflector gratings,” Electron. Lett. 24, 844–845 (1988).
[CrossRef]

Sugden, K.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Trout, T. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
[CrossRef]

Weber, A. M.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
[CrossRef]

Williams, J. A. R.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Yariv, A.

Yeh, P.

P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley-Interscience, New York, 1988), Chap. 7, pp. 254–294.

Zgonik, M.

G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Zhang, L.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Zhao, C.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Adv. Mater.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Electron. Lett.

J. Söchtig, “Ti:LiNbO3 stripe waveguide Bragg reflector gratings,” Electron. Lett. 24, 844–845 (1988).
[CrossRef]

D. E. Sheat, J. S. Leggatt, D. J. McCartney, “Position tunable volume reflection gratings for narrowband filtering applications (FWHM < 5 nm) in optical fiber systems,” Electron. Lett. 26, 42–44 (1990).
[CrossRef]

J. Phys. D

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

R. Müller, J. V. Alvarez-Bravo, L. Arizmendi, J. M. Cabrera, “Tuning of photorefractive interference filters in LiNbO3,” J. Phys. D 27, 1628–1632 (1994).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

I. Bennion, J. A. R. Williams, L. Zhang, K. Sugden, N. J. Doran, “UV-written in-fibre Bragg gratings,” Opt. Quantum Electron. 28, 93–135 (1996).

Phys. Rev. E

G. Montemezzani, M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E 55, 1035–1047 (1997).
[CrossRef]

Other

W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of Dupont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994).
[CrossRef]

P. Yeh, Optical Waves in Layered Media, Wiley Series in Pure and Applied Optics (Wiley-Interscience, New York, 1988), Chap. 7, pp. 254–294.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Coordinate system used in Eq. (1): I i , incident beam; I d , diffracted beam; K, grating vector; θ, angle between I i and the z axis in the material; ϕ, angle between K and the z axis in the material.

Fig. 2
Fig. 2

Experimental setup for recording reflection gratings. I1 and I2, writing beams at λ = 488 nm; I3, reflection of beam of I1 upon the photopolymer surface; 2β, the angle in air between I1 and I2; α, the angle in air between I2 and I3.

Fig. 3
Fig. 3

Experimental setup for detecting the reflection gratings: D1, D2, photodiodes; P, B, are pinhole and beam splitter, respectively; φ, coupling angle in the prism; and I i (I d ) incident (diffracted) probe beams, respectively. The coordinate system and the related quantities θ, ϕ, and d are set in accordance with those in Fig. 1.

Fig. 4
Fig. 4

Spectral response of the reflectance of a reflection grating filter recorded in a 100-µm-thick photopolymer film. The peak reflectance is ∼35%, with a FWHM of 0.09 nm at 884.5 nm. Total incident energy for recording is 70.7 mJ/cm2.

Fig. 5
Fig. 5

Peak reflectance and FWHM as functions of the filter’s central wavelength. The central wavelength is changed by tuning of coupling angle φ (see Fig. 3). The same filter as for Fig. 4 is used.

Fig. 6
Fig. 6

Dependence of peak reflectance at 880 nm on the total incident recording energy.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η=sinh2ν2-ξ2sinh2ν2-ξ2+1-ξ2/ν2,
λnsin β λw,

Metrics