Abstract

The classical Ångström exponent is an operationally robust optical parameter that contains size information on all optically active aerosols in the field of view of a sunphotometer. Assuming that the optical effects of a typical (radius) size distribution can be approximated by separate submicrometer and supermicrometer components, we show that one can exploit the spectral curvature information in the measured optical depth to permit a direct estimation of a fine-mode (submicrometer) Ångström exponent (αf) as well as the optical fraction of fine-mode particles (η). Simple expressions that enable the estimation of these parameters are presented and tested by use of simulations and measurements.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ångström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geogr. Ann. Dtsch. 12, 156–166 (1929).
    [CrossRef]
  2. N. T. O’Neill, T. F. Eck, B. N. Holben, A. Smirnov, O. Dubovik, “Bi-modal size distribution influences on the variation of Angstrom derivatives in spectral and optical depth space,” J. Geophys. Res. (to be published).
  3. J. S. Reid, T. F. Eck, S. A. Christopher, P. V. Hobbs, B. N. Holben, “Use of the Angstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil,” J. Geophys. Res. 104, 27473–27489 (1999).
    [CrossRef]
  4. T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, “The wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. 104, 31333–31350 (1999).
    [CrossRef]
  5. K. S. Shifrin, “Simple relationships for the Ångström parameter of disperse systems,” Appl. Opt. 34, 4480–4485 (1995).
    [CrossRef] [PubMed]
  6. N. T. O’Neill, A. Royer, “Extraction of bimodal aerosol-size distribution radii from spectral and angular slope (Angstrom) coefficients,” Appl. Opt. 32, 1642–1645 (1993).
    [CrossRef] [PubMed]
  7. A. Ångström, “The parameters of atmospheric turbidity,” Tellus 16, 64–75 (1964).
    [CrossRef]
  8. World Meteorological Organization, “Report of the experts meeting on aerosols and their climatic effects,” (World Meteorological Organization, Geneva, Switzerland, 1983).
  9. E. M. Patterson, D. A. Gillette, “Commonalities in measured size distribution for aerosols having a soil-derived component,” J. Geophys. Res. 82, 2074–2082 (1977).
    [CrossRef]
  10. E. P. Shettle, R. W. Fenn, “Models for the aerosol of the lower atmosphere and the effects of humidity variations on their optical properties,” Environmental Research Paper 767, (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  11. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
    [CrossRef]
  12. L. Remer, Y. J. Kaufman, B. N. Holben, “Interannual variation of ambient aerosol characteristics on the East Coast of the United States,” J. Geophys. Res. D2 104, 2223–2231 (1999).
    [CrossRef]
  13. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  14. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
    [CrossRef]
  15. A. Smirnov, B. N. Holben, T. F. Eck, O. Dubovik, I. Slutsker, “Cloud screening and quality control algorithms for the AERONET data base,” Remote Sens. Environ. 73, 337–349 (2000).
    [CrossRef]
  16. O. Dubovik, M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696 (2000).
    [CrossRef]
  17. B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

2000 (2)

A. Smirnov, B. N. Holben, T. F. Eck, O. Dubovik, I. Slutsker, “Cloud screening and quality control algorithms for the AERONET data base,” Remote Sens. Environ. 73, 337–349 (2000).
[CrossRef]

O. Dubovik, M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696 (2000).
[CrossRef]

1999 (3)

L. Remer, Y. J. Kaufman, B. N. Holben, “Interannual variation of ambient aerosol characteristics on the East Coast of the United States,” J. Geophys. Res. D2 104, 2223–2231 (1999).
[CrossRef]

J. S. Reid, T. F. Eck, S. A. Christopher, P. V. Hobbs, B. N. Holben, “Use of the Angstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil,” J. Geophys. Res. 104, 27473–27489 (1999).
[CrossRef]

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, “The wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. 104, 31333–31350 (1999).
[CrossRef]

1998 (1)

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

1995 (1)

1993 (1)

1977 (1)

E. M. Patterson, D. A. Gillette, “Commonalities in measured size distribution for aerosols having a soil-derived component,” J. Geophys. Res. 82, 2074–2082 (1977).
[CrossRef]

1974 (1)

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

1964 (1)

A. Ångström, “The parameters of atmospheric turbidity,” Tellus 16, 64–75 (1964).
[CrossRef]

1929 (1)

A. Ångström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geogr. Ann. Dtsch. 12, 156–166 (1929).
[CrossRef]

Abuhassan, N.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Ångström, A.

A. Ångström, “The parameters of atmospheric turbidity,” Tellus 16, 64–75 (1964).
[CrossRef]

A. Ångström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geogr. Ann. Dtsch. 12, 156–166 (1929).
[CrossRef]

Buis, J. P.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Chatenet, B.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Christopher, S. A.

J. S. Reid, T. F. Eck, S. A. Christopher, P. V. Hobbs, B. N. Holben, “Use of the Angstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil,” J. Geophys. Res. 104, 27473–27489 (1999).
[CrossRef]

Clark, D.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Dubovik, O.

O. Dubovik, M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696 (2000).
[CrossRef]

A. Smirnov, B. N. Holben, T. F. Eck, O. Dubovik, I. Slutsker, “Cloud screening and quality control algorithms for the AERONET data base,” Remote Sens. Environ. 73, 337–349 (2000).
[CrossRef]

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, “The wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. 104, 31333–31350 (1999).
[CrossRef]

N. T. O’Neill, T. F. Eck, B. N. Holben, A. Smirnov, O. Dubovik, “Bi-modal size distribution influences on the variation of Angstrom derivatives in spectral and optical depth space,” J. Geophys. Res. (to be published).

Eck, T. F.

A. Smirnov, B. N. Holben, T. F. Eck, O. Dubovik, I. Slutsker, “Cloud screening and quality control algorithms for the AERONET data base,” Remote Sens. Environ. 73, 337–349 (2000).
[CrossRef]

J. S. Reid, T. F. Eck, S. A. Christopher, P. V. Hobbs, B. N. Holben, “Use of the Angstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil,” J. Geophys. Res. 104, 27473–27489 (1999).
[CrossRef]

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, “The wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. 104, 31333–31350 (1999).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

N. T. O’Neill, T. F. Eck, B. N. Holben, A. Smirnov, O. Dubovik, “Bi-modal size distribution influences on the variation of Angstrom derivatives in spectral and optical depth space,” J. Geophys. Res. (to be published).

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosol of the lower atmosphere and the effects of humidity variations on their optical properties,” Environmental Research Paper 767, (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Frouin, R.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Gillette, D. A.

E. M. Patterson, D. A. Gillette, “Commonalities in measured size distribution for aerosols having a soil-derived component,” J. Geophys. Res. 82, 2074–2082 (1977).
[CrossRef]

Halthore, R.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Hansen, J. E.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Hobbs, P. V.

J. S. Reid, T. F. Eck, S. A. Christopher, P. V. Hobbs, B. N. Holben, “Use of the Angstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil,” J. Geophys. Res. 104, 27473–27489 (1999).
[CrossRef]

Holben, B. N.

A. Smirnov, B. N. Holben, T. F. Eck, O. Dubovik, I. Slutsker, “Cloud screening and quality control algorithms for the AERONET data base,” Remote Sens. Environ. 73, 337–349 (2000).
[CrossRef]

L. Remer, Y. J. Kaufman, B. N. Holben, “Interannual variation of ambient aerosol characteristics on the East Coast of the United States,” J. Geophys. Res. D2 104, 2223–2231 (1999).
[CrossRef]

J. S. Reid, T. F. Eck, S. A. Christopher, P. V. Hobbs, B. N. Holben, “Use of the Angstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil,” J. Geophys. Res. 104, 27473–27489 (1999).
[CrossRef]

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, “The wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. 104, 31333–31350 (1999).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

N. T. O’Neill, T. F. Eck, B. N. Holben, A. Smirnov, O. Dubovik, “Bi-modal size distribution influences on the variation of Angstrom derivatives in spectral and optical depth space,” J. Geophys. Res. (to be published).

Jankowiak, I.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Karnieli, A.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Kaufman, Y.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Kaufman, Y. J.

L. Remer, Y. J. Kaufman, B. N. Holben, “Interannual variation of ambient aerosol characteristics on the East Coast of the United States,” J. Geophys. Res. D2 104, 2223–2231 (1999).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

King, M. D.

O. Dubovik, M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696 (2000).
[CrossRef]

Lavenu, F.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Lavenue, F.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Markham, B.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Nakajima, T.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Newcomb, W. W.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

O’Neill, N. T.

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, “The wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. 104, 31333–31350 (1999).
[CrossRef]

N. T. O’Neill, A. Royer, “Extraction of bimodal aerosol-size distribution radii from spectral and angular slope (Angstrom) coefficients,” Appl. Opt. 32, 1642–1645 (1993).
[CrossRef] [PubMed]

N. T. O’Neill, T. F. Eck, B. N. Holben, A. Smirnov, O. Dubovik, “Bi-modal size distribution influences on the variation of Angstrom derivatives in spectral and optical depth space,” J. Geophys. Res. (to be published).

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Patterson, E. M.

E. M. Patterson, D. A. Gillette, “Commonalities in measured size distribution for aerosols having a soil-derived component,” J. Geophys. Res. 82, 2074–2082 (1977).
[CrossRef]

Pietras, C.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Pinker, R. T.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Reagan, J. A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Reid, J. S.

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, “The wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. 104, 31333–31350 (1999).
[CrossRef]

J. S. Reid, T. F. Eck, S. A. Christopher, P. V. Hobbs, B. N. Holben, “Use of the Angstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil,” J. Geophys. Res. 104, 27473–27489 (1999).
[CrossRef]

Remer, L.

L. Remer, Y. J. Kaufman, B. N. Holben, “Interannual variation of ambient aerosol characteristics on the East Coast of the United States,” J. Geophys. Res. D2 104, 2223–2231 (1999).
[CrossRef]

Royer, A.

Schafer, J.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Setzer, A.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the aerosol of the lower atmosphere and the effects of humidity variations on their optical properties,” Environmental Research Paper 767, (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Shifrin, K. S.

Slutsker, I.

A. Smirnov, B. N. Holben, T. F. Eck, O. Dubovik, I. Slutsker, “Cloud screening and quality control algorithms for the AERONET data base,” Remote Sens. Environ. 73, 337–349 (2000).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Smirnov, A.

A. Smirnov, B. N. Holben, T. F. Eck, O. Dubovik, I. Slutsker, “Cloud screening and quality control algorithms for the AERONET data base,” Remote Sens. Environ. 73, 337–349 (2000).
[CrossRef]

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, “The wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. 104, 31333–31350 (1999).
[CrossRef]

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

N. T. O’Neill, T. F. Eck, B. N. Holben, A. Smirnov, O. Dubovik, “Bi-modal size distribution influences on the variation of Angstrom derivatives in spectral and optical depth space,” J. Geophys. Res. (to be published).

Tanre, D.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Travis, L. D.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Vande Castle, J.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Vermote, E.

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

Voss, K.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Zibordi, G.

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

Appl. Opt. (2)

Geogr. Ann. Dtsch. (1)

A. Ångström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geogr. Ann. Dtsch. 12, 156–166 (1929).
[CrossRef]

J. Geophys. Res. (4)

O. Dubovik, M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20673–20696 (2000).
[CrossRef]

J. S. Reid, T. F. Eck, S. A. Christopher, P. V. Hobbs, B. N. Holben, “Use of the Angstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil,” J. Geophys. Res. 104, 27473–27489 (1999).
[CrossRef]

T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. O’Neill, “The wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols,” J. Geophys. Res. 104, 31333–31350 (1999).
[CrossRef]

E. M. Patterson, D. A. Gillette, “Commonalities in measured size distribution for aerosols having a soil-derived component,” J. Geophys. Res. 82, 2074–2082 (1977).
[CrossRef]

J. Geophys. Res. D2 (1)

L. Remer, Y. J. Kaufman, B. N. Holben, “Interannual variation of ambient aerosol characteristics on the East Coast of the United States,” J. Geophys. Res. D2 104, 2223–2231 (1999).
[CrossRef]

Remote Sens. Environ. (2)

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).
[CrossRef]

A. Smirnov, B. N. Holben, T. F. Eck, O. Dubovik, I. Slutsker, “Cloud screening and quality control algorithms for the AERONET data base,” Remote Sens. Environ. 73, 337–349 (2000).
[CrossRef]

Space Sci. Rev. (1)

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Tellus (1)

A. Ångström, “The parameters of atmospheric turbidity,” Tellus 16, 64–75 (1964).
[CrossRef]

Other (5)

World Meteorological Organization, “Report of the experts meeting on aerosols and their climatic effects,” (World Meteorological Organization, Geneva, Switzerland, 1983).

E. P. Shettle, R. W. Fenn, “Models for the aerosol of the lower atmosphere and the effects of humidity variations on their optical properties,” Environmental Research Paper 767, (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. (to be published).

N. T. O’Neill, T. F. Eck, B. N. Holben, A. Smirnov, O. Dubovik, “Bi-modal size distribution influences on the variation of Angstrom derivatives in spectral and optical depth space,” J. Geophys. Res. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Algorithmic behavior of Eq. (9) at a wavelength of 500 nm. Constant curves of α′ and η are superimposed.

Fig. 2
Fig. 2

Simulated total errors in (a) Δα f , (b) Δα f f , (c) Δη, and (d) Δη/η for the range of conditions illustrated in Fig. 1 and assumed errors in Δα, Δα′, Δα f ′, Δα c , and Δα c ′ (see text for details).

Fig. 3
Fig. 3

Simulations of (a) α and α f versus τ a and (b) η versus τ a at the standard wavelength of 500 nm. The red curves represent estimates of α f and η from the fine-mode extraction algorithm [Eqs. (9) and (6), respectively] and the blue curves are the true simulation values of these parameters. The lower curves in (a) show the corresponding variations in α for the means and standard deviations of τ c given in Table 2.

Fig. 4
Fig. 4

Temporal variation of key parameters associated with α f and η estimation as a function of Julian Day for optical depth spectra acquired during 1998 at the NASA Goddard Space Flight Center AERONET site in Greenbelt, Maryland. The data were filtered such that all points outside of the range -1.1 < α′ < 2 are excluded (4429 data points remained from the original 5050 spectra). λ = 500 nm.

Fig. 5
Fig. 5

Thin-cloud-contaminated optical depth as a function of time for CIMEL data acquired at Egbert, Ontario, and the variance reduction brought about by the transformation of Eqs. (9) and (6). The figure arrangement and color schemes are the same as in Fig. 4 (12.5 ⇒ Greenwich Mean Time noon on 12 August 1998). These data were not cloud screened and no α′ filter was applied. λ = 500 nm.

Fig. 6
Fig. 6

(a) Comparison of η estimates by use of Eq. (6) on a sample temporal profile of six-channel data (filled circles) and computations of η for size distribution inversions from nearly synchronous almucantar and (four-channel) optical depth data (open circles); (b) comparison of α f by use of Eq. (9) with inversion estimates of α f . λ = 500 nm along with the original (measured) and inversion values of α. The label inversion refers to the process of extracting a size distribution and refractive index,13 partitioning the size distribution at 0.6 µm, and then returning to the optical domain to calculate α f and η.

Fig. 7
Fig. 7

Actual size distributions used to compute the inversion profiles of Fig. 6. The division into fine and coarse modes was set at a 0.6-µm radius. This division permitted the computation of fine- and coarse-mode optical depths and thus validation data for the fine-mode extraction algorithms.

Tables (2)

Tables Icon

Table 1 Coarse-Mode Spectral Derivatives for Different Models at λ = 500 nm

Tables Icon

Table 2 Course-Mode Optical Depth Extrema Used in the Simulation (Interpolated to 500 nm)a

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

αλ=-d ln τaλd ln λ,
αλ=αfλτfλ+αcλτcλτaλ=αfληλ+αcλ1-ηλ,
αλ=αfληλ+αcλ1-ηλ-ηλ1-ηλαfλ-αcλ2.
t=α-αc-α-αcα-αc=αf-αc-αf-αcαf-αc,
αf-αc=12t+t2+4αf-αc1/2
η=α-αcαf-αc.
αf=aαf2+bαf+c,
1ρ5,
ρ=2kreff|m-1|22πreff/λmr-1,
αf=121-at+b*+t+b*2+4c*1-a1/2+αc,
Δαf2=αfα Δα+αfα Δα2+αfαf Δαf2+αfαc Δαc2+αfαc Δαc2,
Δη2=ηα Δα+ηα Δα2+ηαf Δαf2+ηαc Δαc2+ηαc Δαc2,
Δα, Δα, Δαf, Δαc, Δαc=0.35, 2*Δα, 0.5, 0.15, 2*Δαc.

Metrics