Abstract

Multielement nematic liquid-crystal devices have been used by others and ourselves for closed-loop adaptive control of optical wave-front distortions. Until recently the phase retardance of available devices could be controlled rapidly in only one direction. The phase retardance of the dual-frequency device can be controlled rapidly in both directions. Understanding the dynamics of the phase retardance change is critical to the development of a high-speed control algorithm. We describe measurements and experiments leading to the closed-loop control of a multielement dual-frequency liquid-crystal adaptive optic.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Vasil’ev, I. N. Kompanets, A. V. Parfenov, “Progress in the development and applications of optically controlled liquid crystal spatial light modulators,” Sov. J. Quantum Electron. 13, 689–695 (1983).
    [CrossRef]
  2. S. T. Kowel, P. Kornreich, A. Nouhi, “Adaptive spherical lens,” Appl. Opt. 23, 2774–2777 (1984).
    [CrossRef] [PubMed]
  3. A. A. Vasil’ev, A. F. Naumov, V. I. Shmal’gauzen, “Wave-front correction by liquid-crystal devices,” Sov. J. Quantum Electron. 16(4), 471–474 (1986).
    [CrossRef]
  4. V. A. Dorezyuk, A. F. Naumov, V. I. Shmal’gauzen, “Control of liquid-crystal correctors in adaptive optical systems,” Sov. Phys. Tech. Phys. 34, 1389–1393 (1989).
  5. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997).
    [CrossRef] [PubMed]
  6. J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, A. Purvis, “A real-time closed loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
    [CrossRef]
  7. M. A. Vorontsov, G. W. Carhart, D. Pruidze, J. C. Ricklin, D. Voelz, “Image quality criteria for an adaptive imaging system based on statistical analysis of the speckle field,” J. Opt. Soc. Am. A 13, 1456–1466 (1996).
    [CrossRef]
  8. D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wave front corrector using addressable liquid crystal retarders,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
    [CrossRef]
  9. A. V. Kudryashov, J. D. Gonglewski, S. L. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
    [CrossRef]
  10. D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, A. V. Kudryashov, “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,” Appl. Opts. 37, 5579–5589 (1998).
    [CrossRef]
  11. D. C. Dayton, S. P. Sandven, J. D. Gonglewski, S. Browne, S. Rogers, S. McDermott, “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt. Exp. 1, 338–346 (1997).
    [CrossRef]
  12. S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Exp. 6, 2–7 (2000).
    [CrossRef]
  13. G. D. Love, J. Fender, S. R. Restaino, “Adaptive wave-front shaping using liquid crystals,” Opt. Photon. News 6, 16–20 (1995).
    [CrossRef]
  14. A. F. Naumov, V. N. Belopukhov, “Dynamic dual-frequency control of nematic liquid crystals in adaptive optic systems,” (Russian Academy of Sciences, P.N. Lebedev Physical Institute, Samara, Russia, 1997).
  15. S. T. Wu, C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
    [CrossRef]
  16. D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25(1), 12–15 (1974).
    [CrossRef]
  17. I. C. Khoo, S. T. Wu, Optics and Non-Linear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
    [CrossRef]
  18. G. Labrunie, J. Robert, “Transient behavior of the electrically controlled birefringence in a nematic liquid crystal,” J. Appl. Phys. 44, 4869–4874 (1973).
    [CrossRef]
  19. F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Ration. Mech. Anal. 28, 265–283 (1968).
  20. G. D. Love, “Liquid-crystal phase modulator for unpolarized light,” Appl. Opt. 32, 2222–2223 (1993).
    [CrossRef] [PubMed]
  21. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [CrossRef]

2000 (1)

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Exp. 6, 2–7 (2000).
[CrossRef]

1998 (1)

D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, A. V. Kudryashov, “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,” Appl. Opts. 37, 5579–5589 (1998).
[CrossRef]

1997 (4)

D. C. Dayton, S. P. Sandven, J. D. Gonglewski, S. Browne, S. Rogers, S. McDermott, “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt. Exp. 1, 338–346 (1997).
[CrossRef]

A. V. Kudryashov, J. D. Gonglewski, S. L. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[CrossRef]

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, A. Purvis, “A real-time closed loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
[CrossRef]

G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997).
[CrossRef] [PubMed]

1996 (1)

1995 (1)

G. D. Love, J. Fender, S. R. Restaino, “Adaptive wave-front shaping using liquid crystals,” Opt. Photon. News 6, 16–20 (1995).
[CrossRef]

1993 (1)

1989 (1)

V. A. Dorezyuk, A. F. Naumov, V. I. Shmal’gauzen, “Control of liquid-crystal correctors in adaptive optical systems,” Sov. Phys. Tech. Phys. 34, 1389–1393 (1989).

1988 (1)

S. T. Wu, C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[CrossRef]

1986 (1)

A. A. Vasil’ev, A. F. Naumov, V. I. Shmal’gauzen, “Wave-front correction by liquid-crystal devices,” Sov. J. Quantum Electron. 16(4), 471–474 (1986).
[CrossRef]

1984 (1)

1983 (1)

A. A. Vasil’ev, I. N. Kompanets, A. V. Parfenov, “Progress in the development and applications of optically controlled liquid crystal spatial light modulators,” Sov. J. Quantum Electron. 13, 689–695 (1983).
[CrossRef]

1976 (1)

1974 (1)

D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25(1), 12–15 (1974).
[CrossRef]

1973 (1)

G. Labrunie, J. Robert, “Transient behavior of the electrically controlled birefringence in a nematic liquid crystal,” J. Appl. Phys. 44, 4869–4874 (1973).
[CrossRef]

1968 (1)

F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Ration. Mech. Anal. 28, 265–283 (1968).

Baker, J.

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Exp. 6, 2–7 (2000).
[CrossRef]

Belopukhov, V. N.

A. F. Naumov, V. N. Belopukhov, “Dynamic dual-frequency control of nematic liquid crystals in adaptive optic systems,” (Russian Academy of Sciences, P.N. Lebedev Physical Institute, Samara, Russia, 1997).

Berreman, D. W.

D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25(1), 12–15 (1974).
[CrossRef]

Biliotti, V.

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wave front corrector using addressable liquid crystal retarders,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
[CrossRef]

Birch, P. M.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, A. Purvis, “A real-time closed loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
[CrossRef]

Bonaccini, D.

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wave front corrector using addressable liquid crystal retarders,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
[CrossRef]

Browne, S.

D. C. Dayton, S. P. Sandven, J. D. Gonglewski, S. Browne, S. Rogers, S. McDermott, “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt. Exp. 1, 338–346 (1997).
[CrossRef]

Browne, S. L.

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Exp. 6, 2–7 (2000).
[CrossRef]

D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, A. V. Kudryashov, “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,” Appl. Opts. 37, 5579–5589 (1998).
[CrossRef]

A. V. Kudryashov, J. D. Gonglewski, S. L. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[CrossRef]

Brusa, G.

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wave front corrector using addressable liquid crystal retarders,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
[CrossRef]

Carhart, G. W.

Dayton, D. C.

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Exp. 6, 2–7 (2000).
[CrossRef]

D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, A. V. Kudryashov, “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,” Appl. Opts. 37, 5579–5589 (1998).
[CrossRef]

D. C. Dayton, S. P. Sandven, J. D. Gonglewski, S. Browne, S. Rogers, S. McDermott, “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt. Exp. 1, 338–346 (1997).
[CrossRef]

Dorezyuk, V. A.

V. A. Dorezyuk, A. F. Naumov, V. I. Shmal’gauzen, “Control of liquid-crystal correctors in adaptive optical systems,” Sov. Phys. Tech. Phys. 34, 1389–1393 (1989).

Esposito, S.

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wave front corrector using addressable liquid crystal retarders,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
[CrossRef]

Fender, J.

G. D. Love, J. Fender, S. R. Restaino, “Adaptive wave-front shaping using liquid crystals,” Opt. Photon. News 6, 16–20 (1995).
[CrossRef]

Gallegos, J.

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Exp. 6, 2–7 (2000).
[CrossRef]

Gonglewski, J.

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Exp. 6, 2–7 (2000).
[CrossRef]

Gonglewski, J. D.

D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, A. V. Kudryashov, “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,” Appl. Opts. 37, 5579–5589 (1998).
[CrossRef]

D. C. Dayton, S. P. Sandven, J. D. Gonglewski, S. Browne, S. Rogers, S. McDermott, “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt. Exp. 1, 338–346 (1997).
[CrossRef]

A. V. Kudryashov, J. D. Gonglewski, S. L. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[CrossRef]

Gourlay, J.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, A. Purvis, “A real-time closed loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
[CrossRef]

Highland, R.

A. V. Kudryashov, J. D. Gonglewski, S. L. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[CrossRef]

Khoo, I. C.

I. C. Khoo, S. T. Wu, Optics and Non-Linear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
[CrossRef]

Kompanets, I. N.

A. A. Vasil’ev, I. N. Kompanets, A. V. Parfenov, “Progress in the development and applications of optically controlled liquid crystal spatial light modulators,” Sov. J. Quantum Electron. 13, 689–695 (1983).
[CrossRef]

Kornreich, P.

Kowel, S. T.

Kudryashov, A. V.

D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, A. V. Kudryashov, “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,” Appl. Opts. 37, 5579–5589 (1998).
[CrossRef]

A. V. Kudryashov, J. D. Gonglewski, S. L. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[CrossRef]

Labrunie, G.

G. Labrunie, J. Robert, “Transient behavior of the electrically controlled birefringence in a nematic liquid crystal,” J. Appl. Phys. 44, 4869–4874 (1973).
[CrossRef]

Leslie, F. M.

F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Ration. Mech. Anal. 28, 265–283 (1968).

Love, G. D.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, A. Purvis, “A real-time closed loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
[CrossRef]

G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997).
[CrossRef] [PubMed]

G. D. Love, J. Fender, S. R. Restaino, “Adaptive wave-front shaping using liquid crystals,” Opt. Photon. News 6, 16–20 (1995).
[CrossRef]

G. D. Love, “Liquid-crystal phase modulator for unpolarized light,” Appl. Opt. 32, 2222–2223 (1993).
[CrossRef] [PubMed]

McDermott, S.

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Exp. 6, 2–7 (2000).
[CrossRef]

D. C. Dayton, S. P. Sandven, J. D. Gonglewski, S. Browne, S. Rogers, S. McDermott, “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt. Exp. 1, 338–346 (1997).
[CrossRef]

Naumov, A. F.

V. A. Dorezyuk, A. F. Naumov, V. I. Shmal’gauzen, “Control of liquid-crystal correctors in adaptive optical systems,” Sov. Phys. Tech. Phys. 34, 1389–1393 (1989).

A. A. Vasil’ev, A. F. Naumov, V. I. Shmal’gauzen, “Wave-front correction by liquid-crystal devices,” Sov. J. Quantum Electron. 16(4), 471–474 (1986).
[CrossRef]

A. F. Naumov, V. N. Belopukhov, “Dynamic dual-frequency control of nematic liquid crystals in adaptive optic systems,” (Russian Academy of Sciences, P.N. Lebedev Physical Institute, Samara, Russia, 1997).

Noll, R. J.

Nouhi, A.

Parfenov, A. V.

A. A. Vasil’ev, I. N. Kompanets, A. V. Parfenov, “Progress in the development and applications of optically controlled liquid crystal spatial light modulators,” Sov. J. Quantum Electron. 13, 689–695 (1983).
[CrossRef]

Pruidze, D.

Purvis, A.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, A. Purvis, “A real-time closed loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
[CrossRef]

Restaino, S. R.

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Exp. 6, 2–7 (2000).
[CrossRef]

G. D. Love, J. Fender, S. R. Restaino, “Adaptive wave-front shaping using liquid crystals,” Opt. Photon. News 6, 16–20 (1995).
[CrossRef]

Ricklin, J. C.

Robert, J.

G. Labrunie, J. Robert, “Transient behavior of the electrically controlled birefringence in a nematic liquid crystal,” J. Appl. Phys. 44, 4869–4874 (1973).
[CrossRef]

Rogers, S.

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Exp. 6, 2–7 (2000).
[CrossRef]

D. C. Dayton, S. P. Sandven, J. D. Gonglewski, S. Browne, S. Rogers, S. McDermott, “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt. Exp. 1, 338–346 (1997).
[CrossRef]

Salinari, P.

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wave front corrector using addressable liquid crystal retarders,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
[CrossRef]

Sandven, S. P.

D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, A. V. Kudryashov, “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,” Appl. Opts. 37, 5579–5589 (1998).
[CrossRef]

D. C. Dayton, S. P. Sandven, J. D. Gonglewski, S. Browne, S. Rogers, S. McDermott, “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt. Exp. 1, 338–346 (1997).
[CrossRef]

Sharples, R. M.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, A. Purvis, “A real-time closed loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
[CrossRef]

Shilko, M.

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Exp. 6, 2–7 (2000).
[CrossRef]

Shmal’gauzen, V. I.

V. A. Dorezyuk, A. F. Naumov, V. I. Shmal’gauzen, “Control of liquid-crystal correctors in adaptive optical systems,” Sov. Phys. Tech. Phys. 34, 1389–1393 (1989).

A. A. Vasil’ev, A. F. Naumov, V. I. Shmal’gauzen, “Wave-front correction by liquid-crystal devices,” Sov. J. Quantum Electron. 16(4), 471–474 (1986).
[CrossRef]

Stefanini, P.

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wave front corrector using addressable liquid crystal retarders,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
[CrossRef]

Vasil’ev, A. A.

A. A. Vasil’ev, A. F. Naumov, V. I. Shmal’gauzen, “Wave-front correction by liquid-crystal devices,” Sov. J. Quantum Electron. 16(4), 471–474 (1986).
[CrossRef]

A. A. Vasil’ev, I. N. Kompanets, A. V. Parfenov, “Progress in the development and applications of optically controlled liquid crystal spatial light modulators,” Sov. J. Quantum Electron. 13, 689–695 (1983).
[CrossRef]

Voelz, D.

Vorontsov, M. A.

Wu, C. S.

S. T. Wu, C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[CrossRef]

Wu, S. T.

S. T. Wu, C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[CrossRef]

I. C. Khoo, S. T. Wu, Optics and Non-Linear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
[CrossRef]

Appl. Opt. (3)

Appl. Opts. (1)

D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, A. V. Kudryashov, “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,” Appl. Opts. 37, 5579–5589 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

S. T. Wu, C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[CrossRef]

D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25(1), 12–15 (1974).
[CrossRef]

Arch. Ration. Mech. Anal. (1)

F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Ration. Mech. Anal. 28, 265–283 (1968).

J. Appl. Phys. (1)

G. Labrunie, J. Robert, “Transient behavior of the electrically controlled birefringence in a nematic liquid crystal,” J. Appl. Phys. 44, 4869–4874 (1973).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, A. Purvis, “A real-time closed loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21 (1997).
[CrossRef]

A. V. Kudryashov, J. D. Gonglewski, S. L. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[CrossRef]

Opt. Exp. (2)

D. C. Dayton, S. P. Sandven, J. D. Gonglewski, S. Browne, S. Rogers, S. McDermott, “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt. Exp. 1, 338–346 (1997).
[CrossRef]

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Exp. 6, 2–7 (2000).
[CrossRef]

Opt. Photon. News (1)

G. D. Love, J. Fender, S. R. Restaino, “Adaptive wave-front shaping using liquid crystals,” Opt. Photon. News 6, 16–20 (1995).
[CrossRef]

Sov. J. Quantum Electron. (2)

A. A. Vasil’ev, I. N. Kompanets, A. V. Parfenov, “Progress in the development and applications of optically controlled liquid crystal spatial light modulators,” Sov. J. Quantum Electron. 13, 689–695 (1983).
[CrossRef]

A. A. Vasil’ev, A. F. Naumov, V. I. Shmal’gauzen, “Wave-front correction by liquid-crystal devices,” Sov. J. Quantum Electron. 16(4), 471–474 (1986).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

V. A. Dorezyuk, A. F. Naumov, V. I. Shmal’gauzen, “Control of liquid-crystal correctors in adaptive optical systems,” Sov. Phys. Tech. Phys. 34, 1389–1393 (1989).

Other (3)

A. F. Naumov, V. N. Belopukhov, “Dynamic dual-frequency control of nematic liquid crystals in adaptive optic systems,” (Russian Academy of Sciences, P.N. Lebedev Physical Institute, Samara, Russia, 1997).

D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, V. Biliotti, “Adaptive optics wave front corrector using addressable liquid crystal retarders,” in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE1543, 133–143 (1991).
[CrossRef]

I. C. Khoo, S. T. Wu, Optics and Non-Linear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Illustration of a birefringent liquid-crystal cell.

Fig. 2
Fig. 2

Single-element nematic liquid-crystal (LC) cell between crossed polarizers.

Fig. 3
Fig. 3

Voltage output of the photodiode.

Fig. 4
Fig. 4

Static phase retardance as a function of low-frequency voltage.

Fig. 5
Fig. 5

Step response for (a) low-frequency voltage and (b) high-frequency voltage.

Fig. 6
Fig. 6

Response to a 780-µs pulse.

Fig. 7
Fig. 7

Square-wave phase retardance produced by pulse-amplitude control.

Fig. 8
Fig. 8

Polarization-insensitive device.

Fig. 9
Fig. 9

Meadowlark Optics multisegment device: (a) arrangement of segments and (b) arrangement of Shack–Hartmann lenslets.

Fig. 10
Fig. 10

Block diagram of multi-input–multioutput pulse-amplitude feedback control algorithm.

Fig. 11
Fig. 11

Diagram of laboratory setup for closed-loop experiments.

Fig. 12
Fig. 12

Long-exposure laboratory results of closed-loop control of the multielement dual-frequency device: (a) open loop with a Strehl ratio of ∼0.08 and (b) closed loop with a Strehl ratio of ∼0.34.

Fig. 13
Fig. 13

Tilt disturbance rejection versus frequency.

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

Δε=εe-εo.
Δϕ=2πλ-d/2d/2nz-ndz.
nz=nnn2 cos2 θz+n2 sin2 θz1/2.
θz, t=n θntcos2n-1πzd.
θz, t=θmtcosπzd.
nz=n1-n2-n2/n24 θm2+n2-n2/n216+9n2-n2/n2264θm4-.
zK11 cos2 θ+K33 sin2 θθz-K33-K11sin θ cos θθz2+α2 sin2 θ-α3 cos2 θvz+ΔεE24πsin θ cos θ=γ1θt+I 2θt2.
zK11 cos2 θ+K33 sin2 θθz-K33-K11sin θ cos θθz2+ΔεE24πsin θ cos θ=γ1θt.
2θz2z=0=-π2d2 θm,
θzz=0=0.
θm2t=12V2-V0lf223 V2+KV0lf21+tanht-t0τ1,
θm2t=12V2-V0lf223 V2+KV0lf21+cotht-t0τ1,
τ1=γ1d2K11π2V2V0lf2-1,
K=K33-K11/K11.
V0lf=π4πK11Δεlf1/2
V0hf=π4πK33Δεhf1/2
Δϕt=Δϕmax1-18n2n2+nnV2-V0lf223 V2+KV0lf2×1+tanht-τ0τ1.
Δϕ=Δϕmax1-14n2n2+nnV2-V0lf223 V2+KV0lf2.
τdecay=γ1d2K11π2.
-K11π2d2γ1 θm=θmt.
Δϕt=Δϕmax1-exp-t+τ00.5 τdecay,
τ1hf=γ1d2K33π2V2V0hf2+1.
Δϕt=Δϕmax1-exp-t+τ00.5 τ1hf,
ΔεE24πsinθcosθ=γ1θt.
tt=γ1d2K11π2 lntan θ2tan θ1VV0lf2.
tt=γ1d2K11π2 lntan θ2tan θ1V-V1V0lf2,
tt=γ1d2K33π2 lntan θ1tan θ2VV0hf2.
Δϕ=sin-1Vdiode1/2.
Δn=n-n=Δϕ|V=0d=2.8860.6328×10-68×10-6=0.228.
V0lf=2.2 V.
Δϕ=Δϕmax1-0.3861+tanht-τ0τ1.
τ1=39 ms,
τ1decay=250 ms.
γ1d2K11π2=τ1decay=250 ms.
τ1=γ1d2K11π2V2V0lf2-1=250/6.438=38.8.
Φhex=ZhexZsq-1H.ϕx11ϕx12ϕy11ϕy12.
H=ZhexZsq-1H,
Φhex=Hϕx11ϕx12ϕy11ϕy12.
Cpulse=gpnonlinearityΦhex.
Ck=Ck-1-gampΦhex,
Ck=Ck+bias.
rejdB=20 log10output disturbance amplitudeinput disturbance amplitude.

Metrics