Abstract

A novel secure holographic memory system with polarization encoding is proposed. Two-dimensional original data are encoded as a two-dimensional polarization distribution. The polarization state at each pixel is scrambled by a mask that changes the polarization state into a random state. The mask can rotate the direction of the principal axes of the elliptically polarized light and can change the phase retardation at each pixel. The light with the random polarization state is stored as a hologram that can produce the vector phase-conjugate beam. In the decryption the vector phase-conjugation readout can recover the original polarization state by use of the same mask used in the encryption. Experimental results of encryption and decryption with a bacteriorhodopsin film are presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  2. K. Kawano, T. Ishii, J. Minabe, T. Niitsu, Y. Nishikata, K. Baba, “Holographic recording and retrieval of polarized light by use of polyester containing cyanoazobenzen units in the side chain,” Opt. Lett. 24, 1269–1271 (1999).
    [CrossRef]
  3. J. A. Davis, D. E. McNamara, D. M. Cottrell, T. Sonhara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000).
    [CrossRef]
  4. K. Kawano, J. Minaba, T. Niitsu, T. Ishii, Y. Nishikata, K. Baba, “Optical computing by a vector holographic memory system,” Opt. Lett. 25, 1077–1079 (2000).
    [CrossRef]
  5. P. Réfrégier, B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [CrossRef] [PubMed]
  6. O. Matoba, B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).
    [CrossRef]
  7. O. Matoba, B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288–7293 (1999).
    [CrossRef]
  8. H. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
    [CrossRef] [PubMed]
  9. G. Unnikrishnan, J. Joseph, K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37, 8181–8188 (1998).
    [CrossRef]
  10. P. C. Mogensen, J. Glückstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
    [CrossRef]
  11. P. C. Mogensen, J. Glückstad, “Phase-only optical encryption,” Opt. Lett. 25, 566–568 (2000).
    [CrossRef]
  12. E. Ya. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Spatial polarization wavefront reversal under conditions of four-wave mixing in biochrome films,” Sov. J. Quantum. Electron. 17, 450–454 (1987).
    [CrossRef]
  13. Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
    [CrossRef]
  14. See http://www.mib-biotech.de/Bacteriorhodopsin.htm .
  15. S. Fukushima, T. Kurokawa, Y. Sakai, “Image encipherment based on optical parallel processing using spatial light modulator,” IEEE Trans. Photonics Technol. Lett. 3, 1133–1135 (1991).
    [CrossRef]

2000 (4)

1999 (3)

1998 (1)

1995 (2)

1994 (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

1993 (1)

Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[CrossRef]

1991 (1)

S. Fukushima, T. Kurokawa, Y. Sakai, “Image encipherment based on optical parallel processing using spatial light modulator,” IEEE Trans. Photonics Technol. Lett. 3, 1133–1135 (1991).
[CrossRef]

1987 (1)

E. Ya. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Spatial polarization wavefront reversal under conditions of four-wave mixing in biochrome films,” Sov. J. Quantum. Electron. 17, 450–454 (1987).
[CrossRef]

Baba, K.

Bashaw, M. C.

H. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Cottrell, D. M.

Davis, J. A.

Fukushima, S.

S. Fukushima, T. Kurokawa, Y. Sakai, “Image encipherment based on optical parallel processing using spatial light modulator,” IEEE Trans. Photonics Technol. Lett. 3, 1133–1135 (1991).
[CrossRef]

Glückstad, J.

P. C. Mogensen, J. Glückstad, “Phase-only optical encryption,” Opt. Lett. 25, 566–568 (2000).
[CrossRef]

P. C. Mogensen, J. Glückstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
[CrossRef]

Heanue, H. F.

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

H. F. Heanue, M. C. Bashaw, L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).
[CrossRef] [PubMed]

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Ishii, T.

Javidi, B.

Joseph, J.

Kawano, K.

Korchemskaya, E. Ya.

E. Ya. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Spatial polarization wavefront reversal under conditions of four-wave mixing in biochrome films,” Sov. J. Quantum. Electron. 17, 450–454 (1987).
[CrossRef]

Kurokawa, T.

S. Fukushima, T. Kurokawa, Y. Sakai, “Image encipherment based on optical parallel processing using spatial light modulator,” IEEE Trans. Photonics Technol. Lett. 3, 1133–1135 (1991).
[CrossRef]

Matoba, O.

McNamara, D. E.

Minaba, J.

Minabe, J.

Mogensen, P. C.

P. C. Mogensen, J. Glückstad, “Phase-only optical encryption,” Opt. Lett. 25, 566–568 (2000).
[CrossRef]

P. C. Mogensen, J. Glückstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
[CrossRef]

Niitsu, T.

Nishikata, Y.

Okada-Shudo, Y.

Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[CrossRef]

Otomo, J.

Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[CrossRef]

Réfrégier, P.

Sakai, Y.

S. Fukushima, T. Kurokawa, Y. Sakai, “Image encipherment based on optical parallel processing using spatial light modulator,” IEEE Trans. Photonics Technol. Lett. 3, 1133–1135 (1991).
[CrossRef]

Sasabe, H.

Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[CrossRef]

Singh, K.

Sonhara, T.

Soskin, M. S.

E. Ya. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Spatial polarization wavefront reversal under conditions of four-wave mixing in biochrome films,” Sov. J. Quantum. Electron. 17, 450–454 (1987).
[CrossRef]

Taranenko, V. B.

E. Ya. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Spatial polarization wavefront reversal under conditions of four-wave mixing in biochrome films,” Sov. J. Quantum. Electron. 17, 450–454 (1987).
[CrossRef]

Unnikrishnan, G.

Yamaguchi, I.

Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[CrossRef]

Appl. Opt. (4)

IEEE Trans. Photonics Technol. Lett. (1)

S. Fukushima, T. Kurokawa, Y. Sakai, “Image encipherment based on optical parallel processing using spatial light modulator,” IEEE Trans. Photonics Technol. Lett. 3, 1133–1135 (1991).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Okada-Shudo, I. Yamaguchi, J. Otomo, H. Sasabe, “Polarization properties in phase conjugation with bacteriorhodopsin,” Jpn. J. Appl. Phys. 32, 3828–3832 (1993).
[CrossRef]

Opt. Commun. (1)

P. C. Mogensen, J. Glückstad, “A phase-based optical encryption system with polarisation encoding,” Opt. Commun. 173, 177–183 (2000).
[CrossRef]

Opt. Lett. (5)

Science (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Sov. J. Quantum. Electron. (1)

E. Ya. Korchemskaya, M. S. Soskin, V. B. Taranenko, “Spatial polarization wavefront reversal under conditions of four-wave mixing in biochrome films,” Sov. J. Quantum. Electron. 17, 450–454 (1987).
[CrossRef]

Other (1)

See http://www.mib-biotech.de/Bacteriorhodopsin.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of (a) the polarization encryption and (b) the decryption.

Fig. 2
Fig. 2

Experimental setup: SP, spatial filter; M’s, mirrors; BS’s, beam splitters; P’s, polarizers; L’s, lenses; CCD’s, CCD cameras; RMM, random modulation mask; BR, bacteriorhodopsin; PC, personal computer.

Fig. 3
Fig. 3

Input images to be encrypted: (a) and (b) two original polarization images and (c) and (d) intensity distribution by polarizer.

Fig. 4
Fig. 4

Intensity distributions of the polarization masks by polarizer.

Fig. 5
Fig. 5

Intensity distributions of encoded polarization distributions. (a) and (b) T and (c) and (d) L.

Fig. 6
Fig. 6

Reconstructed images by use of the same polarization-modulation masks used in the encryption.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Mjk=exp-iΔjk/200expiΔjk/2Rθjk,
Rjkθjk=cos θjksin θjk-sin θjkcos θjk.
ejk=Mjkdjk.
p1=10,  p2=01.
ejk=cos θjk exp-iΔjk/2-sin θjk expiΔjk/2andsin θjk exp-iΔjk/2cos θjk expiΔjk/2,
ejk=ejkxejky=cos θjk exp-iΔjk/2-sin θjk expiΔjk/2.
ejkx2cos2 θjk+ejky2sin2 θjk+4 cos Δjksin 2θjkejkxejky=sin2 Δjk.
αjk=tan-1cos Δjk tan 2θjk2,
Ajkx=sin2 Δjkcos2 αjkcos2 θjk+sin2 αjksin2 θjk+2 sin 2αjk cos Δjksin 2θjk,
Ajky=sin2 Δjksin2 αjkcos2 θjk+cos2 αjksin2 θjk-2 sin 2αjk cos Δjksin 2θjk.
rjk=Mjk-1ejk=Mjk-1Mjkdjk=djk.

Metrics