Abstract

A multichannel wavelength-division-multiplexing system consisting of a two-dimensional photonic crystal is proposed. The system consists of two parts, a waveguiding element, realized by defects in a photonic crystal, and frequency-selective elements, realized by photonic crystal microcavities. Simulations, performed with a two-dimensional finite-difference time-domain technique with a perfectly matched layer absorbing boundary condition, showed the ability to filter an incident pulse into six spectral channels with a FWHM of 2 nm.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. C. Dragone, “Efficient n × n star couplers using Fourier optics,” J. Lightwave Technol. 7, 479–489 (1989).
    [CrossRef]
  4. H. Takahashi, S. Suzuki, I. Nishi, “Wavelength multiplexer based on SiO2–Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12, 989–995 (1994).
    [CrossRef]
  5. K. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
    [CrossRef]
  7. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
    [CrossRef]
  8. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
    [CrossRef]
  9. R. Fan, R. Villeneuve, J. D. Joannopoulos, H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
    [CrossRef]
  10. H. A. Haus, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998).
    [CrossRef] [PubMed]
  11. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).
  12. K. M. Leung, Y. F. Liu, “Photon band structures: the plane-wave method,” Phys. Rev. B 41, 10188–10190 (1990).
    [CrossRef]
  13. A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Boston, Mass., 1998).
  14. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  15. A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech, Boston, Mass., 1995).
  16. K. S. Kunz, R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).
  17. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, Boston, Mass., 2000).
  18. P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
    [CrossRef]
  19. T. Utea, K. Ohtaka, N. Kawai, K. Sakoda, “Limits on quality factors of localized defects modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
    [CrossRef]
  20. G. S. Smith, M. Kesier, J. G. Maloney, B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996).
    [CrossRef]
  21. E. Yablonovitch, T. Gmitter, “Donor and acceptor modes in photonic band structures,” Phys. Rev. Lett. 67, 3380–3383 (1991).
    [CrossRef] [PubMed]
  22. R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, “Photonic bound states in periodic dielectric materials,” Phys. Rev. B 44, 13772–13774 (1991).
    [CrossRef]
  23. S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
    [CrossRef] [PubMed]

1999 (2)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

1998 (4)

R. Fan, R. Villeneuve, J. D. Joannopoulos, H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

T. Utea, K. Ohtaka, N. Kawai, K. Sakoda, “Limits on quality factors of localized defects modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
[CrossRef]

H. A. Haus, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998).
[CrossRef] [PubMed]

1996 (2)

G. S. Smith, M. Kesier, J. G. Maloney, B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996).
[CrossRef]

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[CrossRef]

1994 (2)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

H. Takahashi, S. Suzuki, I. Nishi, “Wavelength multiplexer based on SiO2–Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12, 989–995 (1994).
[CrossRef]

1991 (3)

E. Yablonovitch, T. Gmitter, “Donor and acceptor modes in photonic band structures,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef] [PubMed]

R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, “Photonic bound states in periodic dielectric materials,” Phys. Rev. B 44, 13772–13774 (1991).
[CrossRef]

S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
[CrossRef] [PubMed]

1990 (1)

K. M. Leung, Y. F. Liu, “Photon band structures: the plane-wave method,” Phys. Rev. B 41, 10188–10190 (1990).
[CrossRef]

1989 (1)

C. Dragone, “Efficient n × n star couplers using Fourier optics,” J. Lightwave Technol. 7, 479–489 (1989).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

1978 (1)

K. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, “Photonic bound states in periodic dielectric materials,” Phys. Rev. B 44, 13772–13774 (1991).
[CrossRef]

Dalichaouch, R.

S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
[CrossRef] [PubMed]

Dragone, C.

C. Dragone, “Efficient n × n star couplers using Fourier optics,” J. Lightwave Technol. 7, 479–489 (1989).
[CrossRef]

Fan, R.

R. Fan, R. Villeneuve, J. D. Joannopoulos, H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
[CrossRef]

Fan, S.

H. A. Haus, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998).
[CrossRef] [PubMed]

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[CrossRef]

Fujii, Y.

K. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Gmitter, T.

E. Yablonovitch, T. Gmitter, “Donor and acceptor modes in photonic band structures,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef] [PubMed]

Hagness, S. C.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, Boston, Mass., 2000).

Haus, H. A.

R. Fan, R. Villeneuve, J. D. Joannopoulos, H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
[CrossRef]

H. A. Haus, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998).
[CrossRef] [PubMed]

Hill, K.

K. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Joannopoulos, J. D.

R. Fan, R. Villeneuve, J. D. Joannopoulos, H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
[CrossRef]

H. A. Haus, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998).
[CrossRef] [PubMed]

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[CrossRef]

R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, “Photonic bound states in periodic dielectric materials,” Phys. Rev. B 44, 13772–13774 (1991).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, D. C.

K. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kawai, N.

T. Utea, K. Ohtaka, N. Kawai, K. Sakoda, “Limits on quality factors of localized defects modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Kawasaki, B. S.

K. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Kesier, M.

G. S. Smith, M. Kesier, J. G. Maloney, B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Kunz, K. S.

K. S. Kunz, R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).

Leung, K. M.

K. M. Leung, Y. F. Liu, “Photon band structures: the plane-wave method,” Phys. Rev. B 41, 10188–10190 (1990).
[CrossRef]

Liu, Y. F.

K. M. Leung, Y. F. Liu, “Photon band structures: the plane-wave method,” Phys. Rev. B 41, 10188–10190 (1990).
[CrossRef]

Luebbers, R. J.

K. S. Kunz, R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).

Maloney, J. G.

G. S. Smith, M. Kesier, J. G. Maloney, B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996).
[CrossRef]

McCall, S. L.

S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
[CrossRef] [PubMed]

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, “Photonic bound states in periodic dielectric materials,” Phys. Rev. B 44, 13772–13774 (1991).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Nishi, I.

H. Takahashi, S. Suzuki, I. Nishi, “Wavelength multiplexer based on SiO2–Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12, 989–995 (1994).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Ohtaka, K.

T. Utea, K. Ohtaka, N. Kawai, K. Sakoda, “Limits on quality factors of localized defects modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
[CrossRef]

Platzman, P. M.

S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
[CrossRef] [PubMed]

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, “Photonic bound states in periodic dielectric materials,” Phys. Rev. B 44, 13772–13774 (1991).
[CrossRef]

Sakoda, K.

T. Utea, K. Ohtaka, N. Kawai, K. Sakoda, “Limits on quality factors of localized defects modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Schultz, S.

S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
[CrossRef] [PubMed]

Shirely, B. L.

G. S. Smith, M. Kesier, J. G. Maloney, B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996).
[CrossRef]

Smith, D.

S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
[CrossRef] [PubMed]

Smith, G. S.

G. S. Smith, M. Kesier, J. G. Maloney, B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996).
[CrossRef]

Suzuki, S.

H. Takahashi, S. Suzuki, I. Nishi, “Wavelength multiplexer based on SiO2–Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12, 989–995 (1994).
[CrossRef]

Taflove, A.

A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Boston, Mass., 1998).

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, Boston, Mass., 2000).

A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech, Boston, Mass., 1995).

Takahashi, H.

H. Takahashi, S. Suzuki, I. Nishi, “Wavelength multiplexer based on SiO2–Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12, 989–995 (1994).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

Utea, T.

T. Utea, K. Ohtaka, N. Kawai, K. Sakoda, “Limits on quality factors of localized defects modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
[CrossRef]

Villeneuve, P. R.

H. A. Haus, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998).
[CrossRef] [PubMed]

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[CrossRef]

Villeneuve, R.

R. Fan, R. Villeneuve, J. D. Joannopoulos, H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

Yablonovitch, E.

E. Yablonovitch, T. Gmitter, “Donor and acceptor modes in photonic band structures,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

K. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

J. Appl. Phys. (1)

T. Utea, K. Ohtaka, N. Kawai, K. Sakoda, “Limits on quality factors of localized defects modes in photonic crystals due to dielectric loss,” J. Appl. Phys. 84, 6299–6304 (1998).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Lightwave Technol. (2)

C. Dragone, “Efficient n × n star couplers using Fourier optics,” J. Lightwave Technol. 7, 479–489 (1989).
[CrossRef]

H. Takahashi, S. Suzuki, I. Nishi, “Wavelength multiplexer based on SiO2–Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12, 989–995 (1994).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

G. S. Smith, M. Kesier, J. G. Maloney, B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave Opt. Technol. Lett. 11, 169–174 (1996).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (4)

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[CrossRef]

R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, “Photonic bound states in periodic dielectric materials,” Phys. Rev. B 44, 13772–13774 (1991).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[CrossRef]

K. M. Leung, Y. F. Liu, “Photon band structures: the plane-wave method,” Phys. Rev. B 41, 10188–10190 (1990).
[CrossRef]

Phys. Rev. Lett. (5)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

R. Fan, R. Villeneuve, J. D. Joannopoulos, H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
[CrossRef]

S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, S. Schultz, “Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett. 67, 2017–2020 (1991).
[CrossRef] [PubMed]

E. Yablonovitch, T. Gmitter, “Donor and acceptor modes in photonic band structures,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef] [PubMed]

Other (5)

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N.J., 1995).

A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Boston, Mass., 1998).

A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech, Boston, Mass., 1995).

K. S. Kunz, R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, Fla., 1993).

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, Boston, Mass., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Unit lattice for a two-dimensional photonic crystal with a lattice constant a = 350 nm and dielectric rods of diameter D = 140 nm with ε r = 11.6 on an air background.

Fig. 2
Fig. 2

Transmission spectra for the unit lattice shown in Fig. 1. This structure has a bandgap located between λ = 0.833 µm and λ = 1.25 µm.

Fig. 3
Fig. 3

Single-channel microcavity with a point defect of radius r = 52.5 nm and dielectric constant ε r = 7.0. The two rods of light gray color have dielectric constant ε r = 8.0.

Fig. 4
Fig. 4

Wavelength spectrum of the incident pulse and the pulse measured at the detector.

Fig. 5
Fig. 5

Multichannel (six channels shown in the figure) wavelength division multiplexing that uses multiple microcavities with different point defects: r 1 = 8.75 nm, r 2 = 17.5 nm, r 3 = 26.25 nm, r 4 = 35 nm, r 5 = 43.75 nm, and r 6 = 52.5 nm; each microcavity is connected to a channel within which we have placed six different detectors; d 1, d 2, d 3, d 4, d 5, d 6.

Fig. 6
Fig. 6

Wavelength spectrum of the pulses measured at each of the detectors placed inside each of the different channels of the device shown in Fig. 5. For point defects, r 1 = 8.75 nm, r 2 = 17.5 nm, r 3 = 26.25 nm, r 4 = 35 nm, r 5 = 43.75 nm, and r 6 = 52.5 nm and the corresponding wavelengths are λ1 = 0.875 µm, λ2 = 0.895 µm, λ3 = 0.925 µm, λ4 = 0.94 µm, λ5 = 0.96 µm, and λ6 = 1.025 µm, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

××Er=ω/c2εrEr,
ε(r)=εav+εspatialr,

Metrics