Abstract

We studied light propagation of holmium:YAG laser radiation (λ = 2.12 µm) by measuring the two-dimensional laser beam profile before and after propagation through a tissue sample with a modified fast-temperature-measurement technique. The comparison between water and cartilage tissue allowed us to differentiate between beam broadening caused by formation of a thermal lens and broadening due to light scattering. In water, beam propagation is influenced by formation of thermal lensing, whereas in cartilage the broadening was caused by a combination of light scattering and thermal lensing. Additionally, we discovered that the observed effects are subject to dynamic changes during the laser–tissue interaction.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Motamedi, A. J. Welch, W. F. Cheong, S. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
    [CrossRef]
  2. M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Photobiol. 16, 113–126 (1992).
    [CrossRef]
  3. S. Rastegar, B. M. Kim, S. L. Jacques, “Role of temperature dependence of optical properties in laser irradiation of biological tissue,” in Laser–Tissue Interaction III, S. L. Jacques, A. Katzir, eds., Proc. SPIE1646, 228–231 (1992).
    [CrossRef]
  4. J. T. Walsh, J. P. Cummings, “The effect of dynamic changes in the water absorption coefficient on mid-infrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1993).
    [CrossRef]
  5. J. R. Collins, “Change in the infrared absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
    [CrossRef]
  6. J. A. Curcio, C. C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am. 41, 302–304 (1951).
    [CrossRef]
  7. A. L. McKenzie, “A three-zone model of soft-tissue damage by a CO2 laser,” Phys. Med. Biol. 31, 967–983 (1986).
    [CrossRef] [PubMed]
  8. V. Romano, A. D. Zweig, M. Frenz, H. P. Weber, “Time-resolved thermal microscopy with fluorescent films,” Appl. Phys. B 49, 527–533 (1989).
    [CrossRef]
  9. A. J. Welch, M. J. C. van Germert, “Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
    [CrossRef]
  10. E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–264 (1994).
    [CrossRef]
  11. S. L. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993).
    [CrossRef] [PubMed]
  12. M. F. Dillingham, J. M. Price, G. S. Fanton, “Holmium laser surgery,” Orthopedics 16, 563–566 (1993).
    [PubMed]
  13. C. J. Janecki, M. W. Perry, A. O. Bonati, M. Bendel, “Safe parameters for laser chondroplasty of the knee,” Lasers Surg. Med. 23, 141–150 (1998).
    [CrossRef] [PubMed]
  14. C. Lubbers, W. E. Siebert, “Holmium:YAG-laser-assisted arthroscopy versus conventional methods for treatment of the knee. two-year results of a prospective study,” Knee Surg. Sports Traumatol. Arthrosc. 5, 168–175 (1997).
    [CrossRef]
  15. M. Ith, H. Pratisto, H. U. Stäubli, H. J. Altermatt, M. Frenz, H. P. Weber, “Side-effects of laser therapy on cartilage,” Sports Exercise Injury 2, 207–209 (1996).
  16. C. T. Vangsness, C. F. Smith, “Arthroscopic shoulder surgery with three different laser systems: an evaluation of laser applications,” Arthroscopy 11, 696–700 (1995).
    [CrossRef] [PubMed]
  17. K. B. Trauner, N. S. Nishioka, T. Flotte, D. Patel, “Acute and chronic response of articular cartilage to holmium:YAG laser irradiation,” Clin. Orthop. Relat. Res. 310, 52–57 (1995).
    [PubMed]
  18. K. O. Moller, B. M. Lind, K. Karcher, G. Hohlbach, “Holmium laser versus mechanical cartilage resection: comparative studies in the rabbit arthrosis model,” Langenbecks Arch. Chir. 379, 84–94 (1994).
  19. M. Buchelt, H. P. Kutschera, T. Katterschafka, H. Kiss, B. Schneider, R. Ullrich, “Er:YAG and Ho:YAG laser ablation of meniscus and intervertebral discs,” Lasers Surg. Med. 12, 375–381 (1992).
    [CrossRef]

1998 (1)

C. J. Janecki, M. W. Perry, A. O. Bonati, M. Bendel, “Safe parameters for laser chondroplasty of the knee,” Lasers Surg. Med. 23, 141–150 (1998).
[CrossRef] [PubMed]

1997 (1)

C. Lubbers, W. E. Siebert, “Holmium:YAG-laser-assisted arthroscopy versus conventional methods for treatment of the knee. two-year results of a prospective study,” Knee Surg. Sports Traumatol. Arthrosc. 5, 168–175 (1997).
[CrossRef]

1996 (1)

M. Ith, H. Pratisto, H. U. Stäubli, H. J. Altermatt, M. Frenz, H. P. Weber, “Side-effects of laser therapy on cartilage,” Sports Exercise Injury 2, 207–209 (1996).

1995 (2)

C. T. Vangsness, C. F. Smith, “Arthroscopic shoulder surgery with three different laser systems: an evaluation of laser applications,” Arthroscopy 11, 696–700 (1995).
[CrossRef] [PubMed]

K. B. Trauner, N. S. Nishioka, T. Flotte, D. Patel, “Acute and chronic response of articular cartilage to holmium:YAG laser irradiation,” Clin. Orthop. Relat. Res. 310, 52–57 (1995).
[PubMed]

1994 (2)

K. O. Moller, B. M. Lind, K. Karcher, G. Hohlbach, “Holmium laser versus mechanical cartilage resection: comparative studies in the rabbit arthrosis model,” Langenbecks Arch. Chir. 379, 84–94 (1994).

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–264 (1994).
[CrossRef]

1993 (3)

S. L. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993).
[CrossRef] [PubMed]

M. F. Dillingham, J. M. Price, G. S. Fanton, “Holmium laser surgery,” Orthopedics 16, 563–566 (1993).
[PubMed]

J. T. Walsh, J. P. Cummings, “The effect of dynamic changes in the water absorption coefficient on mid-infrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1993).
[CrossRef]

1992 (2)

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Photobiol. 16, 113–126 (1992).
[CrossRef]

M. Buchelt, H. P. Kutschera, T. Katterschafka, H. Kiss, B. Schneider, R. Ullrich, “Er:YAG and Ho:YAG laser ablation of meniscus and intervertebral discs,” Lasers Surg. Med. 12, 375–381 (1992).
[CrossRef]

1989 (1)

V. Romano, A. D. Zweig, M. Frenz, H. P. Weber, “Time-resolved thermal microscopy with fluorescent films,” Appl. Phys. B 49, 527–533 (1989).
[CrossRef]

1988 (1)

M. Motamedi, A. J. Welch, W. F. Cheong, S. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
[CrossRef]

1986 (1)

A. L. McKenzie, “A three-zone model of soft-tissue damage by a CO2 laser,” Phys. Med. Biol. 31, 967–983 (1986).
[CrossRef] [PubMed]

1951 (1)

1925 (1)

J. R. Collins, “Change in the infrared absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Altermatt, H. J.

M. Ith, H. Pratisto, H. U. Stäubli, H. J. Altermatt, M. Frenz, H. P. Weber, “Side-effects of laser therapy on cartilage,” Sports Exercise Injury 2, 207–209 (1996).

Bendel, M.

C. J. Janecki, M. W. Perry, A. O. Bonati, M. Bendel, “Safe parameters for laser chondroplasty of the knee,” Lasers Surg. Med. 23, 141–150 (1998).
[CrossRef] [PubMed]

Bonati, A. O.

C. J. Janecki, M. W. Perry, A. O. Bonati, M. Bendel, “Safe parameters for laser chondroplasty of the knee,” Lasers Surg. Med. 23, 141–150 (1998).
[CrossRef] [PubMed]

Borst, C.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–264 (1994).
[CrossRef]

Buchelt, M.

M. Buchelt, H. P. Kutschera, T. Katterschafka, H. Kiss, B. Schneider, R. Ullrich, “Er:YAG and Ho:YAG laser ablation of meniscus and intervertebral discs,” Lasers Surg. Med. 12, 375–381 (1992).
[CrossRef]

Cheong, W. F.

M. Motamedi, A. J. Welch, W. F. Cheong, S. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
[CrossRef]

Collins, J. R.

J. R. Collins, “Change in the infrared absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Cummings, J. P.

J. T. Walsh, J. P. Cummings, “The effect of dynamic changes in the water absorption coefficient on mid-infrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1993).
[CrossRef]

Curcio, J. A.

Dillingham, M. F.

M. F. Dillingham, J. M. Price, G. S. Fanton, “Holmium laser surgery,” Orthopedics 16, 563–566 (1993).
[PubMed]

Fanton, G. S.

M. F. Dillingham, J. M. Price, G. S. Fanton, “Holmium laser surgery,” Orthopedics 16, 563–566 (1993).
[PubMed]

Flotte, T.

K. B. Trauner, N. S. Nishioka, T. Flotte, D. Patel, “Acute and chronic response of articular cartilage to holmium:YAG laser irradiation,” Clin. Orthop. Relat. Res. 310, 52–57 (1995).
[PubMed]

Frenz, M.

M. Ith, H. Pratisto, H. U. Stäubli, H. J. Altermatt, M. Frenz, H. P. Weber, “Side-effects of laser therapy on cartilage,” Sports Exercise Injury 2, 207–209 (1996).

V. Romano, A. D. Zweig, M. Frenz, H. P. Weber, “Time-resolved thermal microscopy with fluorescent films,” Appl. Phys. B 49, 527–533 (1989).
[CrossRef]

Gardner, C. M.

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Photobiol. 16, 113–126 (1992).
[CrossRef]

Ghaffari, S.

M. Motamedi, A. J. Welch, W. F. Cheong, S. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
[CrossRef]

Hohlbach, G.

K. O. Moller, B. M. Lind, K. Karcher, G. Hohlbach, “Holmium laser versus mechanical cartilage resection: comparative studies in the rabbit arthrosis model,” Langenbecks Arch. Chir. 379, 84–94 (1994).

Ith, M.

M. Ith, H. Pratisto, H. U. Stäubli, H. J. Altermatt, M. Frenz, H. P. Weber, “Side-effects of laser therapy on cartilage,” Sports Exercise Injury 2, 207–209 (1996).

Jacques, S. L.

S. L. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993).
[CrossRef] [PubMed]

S. Rastegar, B. M. Kim, S. L. Jacques, “Role of temperature dependence of optical properties in laser irradiation of biological tissue,” in Laser–Tissue Interaction III, S. L. Jacques, A. Katzir, eds., Proc. SPIE1646, 228–231 (1992).
[CrossRef]

Janecki, C. J.

C. J. Janecki, M. W. Perry, A. O. Bonati, M. Bendel, “Safe parameters for laser chondroplasty of the knee,” Lasers Surg. Med. 23, 141–150 (1998).
[CrossRef] [PubMed]

Jansen, E. D.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–264 (1994).
[CrossRef]

Jerath, M. R.

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Photobiol. 16, 113–126 (1992).
[CrossRef]

Karcher, K.

K. O. Moller, B. M. Lind, K. Karcher, G. Hohlbach, “Holmium laser versus mechanical cartilage resection: comparative studies in the rabbit arthrosis model,” Langenbecks Arch. Chir. 379, 84–94 (1994).

Katterschafka, T.

M. Buchelt, H. P. Kutschera, T. Katterschafka, H. Kiss, B. Schneider, R. Ullrich, “Er:YAG and Ho:YAG laser ablation of meniscus and intervertebral discs,” Lasers Surg. Med. 12, 375–381 (1992).
[CrossRef]

Kim, B. M.

S. Rastegar, B. M. Kim, S. L. Jacques, “Role of temperature dependence of optical properties in laser irradiation of biological tissue,” in Laser–Tissue Interaction III, S. L. Jacques, A. Katzir, eds., Proc. SPIE1646, 228–231 (1992).
[CrossRef]

Kiss, H.

M. Buchelt, H. P. Kutschera, T. Katterschafka, H. Kiss, B. Schneider, R. Ullrich, “Er:YAG and Ho:YAG laser ablation of meniscus and intervertebral discs,” Lasers Surg. Med. 12, 375–381 (1992).
[CrossRef]

Kutschera, H. P.

M. Buchelt, H. P. Kutschera, T. Katterschafka, H. Kiss, B. Schneider, R. Ullrich, “Er:YAG and Ho:YAG laser ablation of meniscus and intervertebral discs,” Lasers Surg. Med. 12, 375–381 (1992).
[CrossRef]

Lind, B. M.

K. O. Moller, B. M. Lind, K. Karcher, G. Hohlbach, “Holmium laser versus mechanical cartilage resection: comparative studies in the rabbit arthrosis model,” Langenbecks Arch. Chir. 379, 84–94 (1994).

Lubbers, C.

C. Lubbers, W. E. Siebert, “Holmium:YAG-laser-assisted arthroscopy versus conventional methods for treatment of the knee. two-year results of a prospective study,” Knee Surg. Sports Traumatol. Arthrosc. 5, 168–175 (1997).
[CrossRef]

McKenzie, A. L.

A. L. McKenzie, “A three-zone model of soft-tissue damage by a CO2 laser,” Phys. Med. Biol. 31, 967–983 (1986).
[CrossRef] [PubMed]

Moller, K. O.

K. O. Moller, B. M. Lind, K. Karcher, G. Hohlbach, “Holmium laser versus mechanical cartilage resection: comparative studies in the rabbit arthrosis model,” Langenbecks Arch. Chir. 379, 84–94 (1994).

Motamedi, M.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–264 (1994).
[CrossRef]

M. Motamedi, A. J. Welch, W. F. Cheong, S. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
[CrossRef]

Nishioka, N. S.

K. B. Trauner, N. S. Nishioka, T. Flotte, D. Patel, “Acute and chronic response of articular cartilage to holmium:YAG laser irradiation,” Clin. Orthop. Relat. Res. 310, 52–57 (1995).
[PubMed]

Patel, D.

K. B. Trauner, N. S. Nishioka, T. Flotte, D. Patel, “Acute and chronic response of articular cartilage to holmium:YAG laser irradiation,” Clin. Orthop. Relat. Res. 310, 52–57 (1995).
[PubMed]

Perry, M. W.

C. J. Janecki, M. W. Perry, A. O. Bonati, M. Bendel, “Safe parameters for laser chondroplasty of the knee,” Lasers Surg. Med. 23, 141–150 (1998).
[CrossRef] [PubMed]

Petty, C. C.

Pratisto, H.

M. Ith, H. Pratisto, H. U. Stäubli, H. J. Altermatt, M. Frenz, H. P. Weber, “Side-effects of laser therapy on cartilage,” Sports Exercise Injury 2, 207–209 (1996).

Price, J. M.

M. F. Dillingham, J. M. Price, G. S. Fanton, “Holmium laser surgery,” Orthopedics 16, 563–566 (1993).
[PubMed]

Rastegar, S.

S. Rastegar, B. M. Kim, S. L. Jacques, “Role of temperature dependence of optical properties in laser irradiation of biological tissue,” in Laser–Tissue Interaction III, S. L. Jacques, A. Katzir, eds., Proc. SPIE1646, 228–231 (1992).
[CrossRef]

Romano, V.

V. Romano, A. D. Zweig, M. Frenz, H. P. Weber, “Time-resolved thermal microscopy with fluorescent films,” Appl. Phys. B 49, 527–533 (1989).
[CrossRef]

Rylander, H. G.

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Photobiol. 16, 113–126 (1992).
[CrossRef]

Schneider, B.

M. Buchelt, H. P. Kutschera, T. Katterschafka, H. Kiss, B. Schneider, R. Ullrich, “Er:YAG and Ho:YAG laser ablation of meniscus and intervertebral discs,” Lasers Surg. Med. 12, 375–381 (1992).
[CrossRef]

Siebert, W. E.

C. Lubbers, W. E. Siebert, “Holmium:YAG-laser-assisted arthroscopy versus conventional methods for treatment of the knee. two-year results of a prospective study,” Knee Surg. Sports Traumatol. Arthrosc. 5, 168–175 (1997).
[CrossRef]

Smith, C. F.

C. T. Vangsness, C. F. Smith, “Arthroscopic shoulder surgery with three different laser systems: an evaluation of laser applications,” Arthroscopy 11, 696–700 (1995).
[CrossRef] [PubMed]

Stäubli, H. U.

M. Ith, H. Pratisto, H. U. Stäubli, H. J. Altermatt, M. Frenz, H. P. Weber, “Side-effects of laser therapy on cartilage,” Sports Exercise Injury 2, 207–209 (1996).

Tan, O. T.

M. Motamedi, A. J. Welch, W. F. Cheong, S. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
[CrossRef]

Trauner, K. B.

K. B. Trauner, N. S. Nishioka, T. Flotte, D. Patel, “Acute and chronic response of articular cartilage to holmium:YAG laser irradiation,” Clin. Orthop. Relat. Res. 310, 52–57 (1995).
[PubMed]

Ullrich, R.

M. Buchelt, H. P. Kutschera, T. Katterschafka, H. Kiss, B. Schneider, R. Ullrich, “Er:YAG and Ho:YAG laser ablation of meniscus and intervertebral discs,” Lasers Surg. Med. 12, 375–381 (1992).
[CrossRef]

van Germert, M. J. C.

A. J. Welch, M. J. C. van Germert, “Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

van Leeuwen, T. G.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–264 (1994).
[CrossRef]

Vangsness, C. T.

C. T. Vangsness, C. F. Smith, “Arthroscopic shoulder surgery with three different laser systems: an evaluation of laser applications,” Arthroscopy 11, 696–700 (1995).
[CrossRef] [PubMed]

Walsh, J. T.

J. T. Walsh, J. P. Cummings, “The effect of dynamic changes in the water absorption coefficient on mid-infrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1993).
[CrossRef]

Weber, H. P.

M. Ith, H. Pratisto, H. U. Stäubli, H. J. Altermatt, M. Frenz, H. P. Weber, “Side-effects of laser therapy on cartilage,” Sports Exercise Injury 2, 207–209 (1996).

V. Romano, A. D. Zweig, M. Frenz, H. P. Weber, “Time-resolved thermal microscopy with fluorescent films,” Appl. Phys. B 49, 527–533 (1989).
[CrossRef]

Welch, A. J.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–264 (1994).
[CrossRef]

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Photobiol. 16, 113–126 (1992).
[CrossRef]

M. Motamedi, A. J. Welch, W. F. Cheong, S. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
[CrossRef]

A. J. Welch, M. J. C. van Germert, “Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

Zweig, A. D.

V. Romano, A. D. Zweig, M. Frenz, H. P. Weber, “Time-resolved thermal microscopy with fluorescent films,” Appl. Phys. B 49, 527–533 (1989).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

V. Romano, A. D. Zweig, M. Frenz, H. P. Weber, “Time-resolved thermal microscopy with fluorescent films,” Appl. Phys. B 49, 527–533 (1989).
[CrossRef]

Arthroscopy (1)

C. T. Vangsness, C. F. Smith, “Arthroscopic shoulder surgery with three different laser systems: an evaluation of laser applications,” Arthroscopy 11, 696–700 (1995).
[CrossRef] [PubMed]

Clin. Orthop. Relat. Res. (1)

K. B. Trauner, N. S. Nishioka, T. Flotte, D. Patel, “Acute and chronic response of articular cartilage to holmium:YAG laser irradiation,” Clin. Orthop. Relat. Res. 310, 52–57 (1995).
[PubMed]

IEEE J. Quantum Electron. (1)

M. Motamedi, A. J. Welch, W. F. Cheong, S. Ghaffari, O. T. Tan, “Thermal lensing in biologic medium,” IEEE J. Quantum Electron. 24, 693–696 (1988).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Photochem. Photobiol. (1)

M. R. Jerath, C. M. Gardner, H. G. Rylander, A. J. Welch, “Dynamic optical property changes: implications for reflectance feedback control of photocoagulation,” J. Photochem. Photobiol. 16, 113–126 (1992).
[CrossRef]

Knee Surg. Sports Traumatol. Arthrosc. (1)

C. Lubbers, W. E. Siebert, “Holmium:YAG-laser-assisted arthroscopy versus conventional methods for treatment of the knee. two-year results of a prospective study,” Knee Surg. Sports Traumatol. Arthrosc. 5, 168–175 (1997).
[CrossRef]

Langenbecks Arch. Chir. (1)

K. O. Moller, B. M. Lind, K. Karcher, G. Hohlbach, “Holmium laser versus mechanical cartilage resection: comparative studies in the rabbit arthrosis model,” Langenbecks Arch. Chir. 379, 84–94 (1994).

Lasers Surg. Med. (4)

M. Buchelt, H. P. Kutschera, T. Katterschafka, H. Kiss, B. Schneider, R. Ullrich, “Er:YAG and Ho:YAG laser ablation of meniscus and intervertebral discs,” Lasers Surg. Med. 12, 375–381 (1992).
[CrossRef]

C. J. Janecki, M. W. Perry, A. O. Bonati, M. Bendel, “Safe parameters for laser chondroplasty of the knee,” Lasers Surg. Med. 23, 141–150 (1998).
[CrossRef] [PubMed]

J. T. Walsh, J. P. Cummings, “The effect of dynamic changes in the water absorption coefficient on mid-infrared laser ablation,” Lasers Surg. Med. 15, 295–305 (1993).
[CrossRef]

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption coefficient of water for mid-infrared laser radiation,” Lasers Surg. Med. 14, 258–264 (1994).
[CrossRef]

Orthopedics (1)

M. F. Dillingham, J. M. Price, G. S. Fanton, “Holmium laser surgery,” Orthopedics 16, 563–566 (1993).
[PubMed]

Phys. Med. Biol. (1)

A. L. McKenzie, “A three-zone model of soft-tissue damage by a CO2 laser,” Phys. Med. Biol. 31, 967–983 (1986).
[CrossRef] [PubMed]

Phys. Rev. (1)

J. R. Collins, “Change in the infrared absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Sports Exercise Injury (1)

M. Ith, H. Pratisto, H. U. Stäubli, H. J. Altermatt, M. Frenz, H. P. Weber, “Side-effects of laser therapy on cartilage,” Sports Exercise Injury 2, 207–209 (1996).

Other (2)

S. Rastegar, B. M. Kim, S. L. Jacques, “Role of temperature dependence of optical properties in laser irradiation of biological tissue,” in Laser–Tissue Interaction III, S. L. Jacques, A. Katzir, eds., Proc. SPIE1646, 228–231 (1992).
[CrossRef]

A. J. Welch, M. J. C. van Germert, “Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Overview of experimental setup. (b) Detailed view of the region in the dotted circle of Fig. 1(a) showing the temperature-sensitive element and the exact distances used in the experiment. Upper right, sketch of the sensitive film, which is described in detail in Subsection 2.D.2.

Fig. 2
Fig. 2

Relative fluorescence intensity as a function of the temperature. The equation I(T) is used for the temperature calibration of the temperature-sensitive film (a, b, and c are the fit parameters).

Fig. 3
Fig. 3

Mathematical correction of the energy-dependent broadening of the measured profile caused by radial heat diffusion inside the film. The transition (marked by arrows) from the measured (filled symbols) to the calculated values (open symbols) was performed with the empirically determined equation r′(E) = r(1 + Δr)[ln(E/ E ref)/ln(1 - ΔE)] ( E ref is used for normalization). The different moments of observation are represented by the different symbols (circles, τ0 = 50 µs; squares, τ0 = 150 µs; triangles, τ0 = 250 µs).

Fig. 4
Fig. 4

Course of a single measurement beginning with the captured pictures in the upper left corner and going counterclockwise to the final evaluation of the beam parameters. The single steps are explained in the text.

Fig. 5
Fig. 5

(a) Laser beam radii measured after transmission of a water layer (d = 200 µm) as a function of the laser pulse energy. Solid line, linear regression fit from which the slope was evaluated. (b) Evaluated slopes as a function of the water layer thickness. Filled symbols, values obtained from Fig. 5(a).

Fig. 6
Fig. 6

(a) Normalized beam radii plotted as a function of the water-layer thickness. The evaluated slopes are a measure for the beam broadening. (b) Evaluated slopes as a function of the laser pulse energy. Filled symbols, values obtained from Fig. 6(a).

Fig. 7
Fig. 7

(a) Transmitted energy as a function of water-layer thickness for three different moments of observation (triangles, τ0 = 50 µs; squares, τ0 = 150 µs; diamonds, τ0 = 250 µs). The curves fitted to the data points represent the exponential decay according Beer’s law used to evaluate the absorption coefficient μ a . (b) Absorption coefficient μ a as a function of the laser pulse energy. Filled symbols, results obtained from Fig. 7(a).

Fig. 8
Fig. 8

(a) Laser beam radii after transmission of a cartilage sample (d = 100 µm) as a function of the laser energy. The line is the linear regression fit used to evaluate the slope. (b) Evaluated slopes as a function of the cartilage thickness. Filled symbols, values obtained from Fig. 8(a).

Fig. 9
Fig. 9

(a) Normalized beam radii as a function of the cartilage thickness. The evaluated slopes are a measure for the beam broadening. (b) Evaluated slopes as a function of the laser pulse energy. Filled symbols, values obtained from Fig. 9(a).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

IT=IT0a+expbT+c
Tx=A2πrexp-x-μ22r2+mx+Troom.
r=rd|E,  r=rE|d.
TxTx=A2πrexp-x22r2.
Ar  π0x2x Txdx.
Ed=E0 exp-μad.

Metrics