Abstract

The development of near-infrared (NIR) optical imaging for biomedical optical imaging is hampered by the computational intensiveness of large-scale three-dimensional (3-D) image reconstruction and the potential lack of endogenous contrast for detection of relevant tissue features. In this contribution the inverse optical imaging problem is formulated in three dimensions in a noncompressive geometry as a simple-bound constrained minimization problem in order to recover the interior fluorescence properties of exogenous contrast agent from frequency-domain photon migration measurements at the boundary. The solution of the forward optical diffusion problem for the frustum shape containing fluorescence inclusions of 10:1 contrast is accomplished by use of the Galerkin finite-element formulation. The inverse approach employs the truncated Newton method with trust region and a modification of automatic reverse differentiation to speed the computation of the optimization problem. The image-reconstruction results confirm that the constrained minimization may offer a more logical approach for the 3-D optical imaging problem than unconstrained optimization.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. O. McBride, B. Pogue, E. D. Gerety, S. G. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
    [CrossRef]
  2. S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
    [CrossRef]
  3. D. J. Hawrysz, E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer agents,” Neoplasia 2, 388–417 (2000).
    [CrossRef]
  4. E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photoch. Photobiol. 66, 55–64 (1997).
    [CrossRef]
  5. E. M. Sevick-Muraca, D. Y. Paithankar, “Fluorescence imaging system and measurement,” U.S. patent5,865,754 (2February1999).
  6. R. Barbour, H. L. Graber, “Diagnostic imaging with light, and beyond,” in Proceedings of the Annual International Conference of the IEEE on Engineering in Medicine and Biology (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 2.
  7. X. Li, B. Chance, A. G. Yodh, “Fluorescence heterogeneities in turbid media, limits for detection, characterization, and comparison with absorption,” Appl. Opt. 37, 6833–6843 (1998).
    [CrossRef]
  8. N. Vasilis, A. G. Yodh, M. Schall, B. Chance, “Comparison between intrinsic and extrinsic contrast for malignancy detection using NIR mammography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. T. Tromberg, eds., Proc. SPIE3597, 565–570 (1999).
    [CrossRef]
  9. D. A. Boas, T. Gaudette, L. Wang, A. Y. Makan, W. Koroshetz, G. Sorenson, “Preliminary investigation into the use of diffuse optical tomography for monitoring and imaging stroke,” in Battlefield Biomedical Technologies, H. H. Pien, ed., Proc. SPIE3712, 56–61 (1999).
    [CrossRef]
  10. A. Becker, G. Schneider, B. Reiki, K. Lich, W. Smeller, “Localization of near-infrared contrast agents in tumors by intravital microscopy,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 112–118 (1999).
    [CrossRef]
  11. K. Licha, A. Becker, “New contrast agents for optical imaging: acid cleavable conjugates of cyanine dyes with Biomolecules,” in Biomedical Imaging, Reporters, Dyes and Instrumentation, D. J. Bornhop, C. H. Contag, E. M. Sevick-Muraca, eds., Proc. SPIE3600, 29–35 (1999).
    [CrossRef]
  12. X. D. Zhu, S. P. Wei, X. W. Guo, “Imaging objects in tissue-like media with optical tagging and the diffuse photon differential transmittance,” J. Opt. Soc. Am. A 14, 300–305 (1997).
    [CrossRef]
  13. V. Chernomordik, V. D. Hattery, L. Gannot, A. H. Amir, “Inverse method 3-D reconstruction of localized in vivo fluorescence: application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 54, 930–935 (1999).
    [CrossRef]
  14. J. W. Chang, H. L. Graber, P. C. Ok, R. Aronson, S. L. Barbour, R. L. Barbour, “Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources,” IEEE Trans. Med. Imaging 16, 68–77 (1997).
    [CrossRef] [PubMed]
  15. D. Hattery, V. Chernomorik, I. Gannot, M. Loew, A. H. Gandjbakhche, “Fluorescence measurement of localized, deeply embedded physiological processes,” in Physiology and Function from Multidimensional Images, C.-T. Chen, A. V. Clough, eds., Proc. SPIE3978, 377–382 (2000).
  16. K. Sakanti, M. Kashiwasake-Jibu, Y. Taka, S. M. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Non-invasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
    [CrossRef]
  17. N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
    [CrossRef] [PubMed]
  18. C. H. Tung, S. Bredow, U. Mahmood, R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescent probe for imaging,” Bioconjug. Chem. 10, 892–896 (1999).
    [CrossRef] [PubMed]
  19. R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nature Biotech. 4, 375–378 (1999).
    [CrossRef]
  20. E. Marecos, R. Weissleder, A. Bogdanvo, “Anti-body mediated versus nontargeted delivery in human small cell lung carcinoma,” Bioconj. Chem. 9, 184–191 (1998).
    [CrossRef]
  21. S. Achilefu, R. B. Dorchow, J. E. Bugaji, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
    [CrossRef] [PubMed]
  22. M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, J. S. Reynolds, B. Muggenberger, R. H. Mayer, D. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for detection of normal and tumor tissue using continuous, near-infrared reflectance imaging,” Photochem. Photobiol. 72, 94–102 (2000).
    [CrossRef] [PubMed]
  23. E. M. Sevick-Muraca, C. L. Burch, “The origin of phosphorescent and fluorescent signals in tissues,” Opt. Lett. 19, 1928–1930 (1994).
    [CrossRef] [PubMed]
  24. R. Roy, E. M. Sevick-Muraca, “Active constrained truncated Newton method for optical tomography,” J. Opt. Soc. Am. A 17, 1627–1641 (2000).
    [CrossRef]
  25. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from tissues and other random media,” Appl. Opt. 36, 2260–2272 (1997).
    [CrossRef] [PubMed]
  26. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
    [CrossRef] [PubMed]
  27. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  28. Gambit, Fidap 8 user’s manual (Fluent, Inc., 500 Davies Street, Suite 600, Evanston, Ill. 60201, 1998).
  29. O. C. Zienkiewez, R. L. Taylor, The Finite Element Methods in Engineering Science (McGraw-Hill, New York, 1989).
  30. R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography. I. Theory and Formulation,” Opt. Express 4, 353–371 (1999), http://www.opticsexpress.org .
    [CrossRef]
  31. R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography. II. Reconstructions from synthetic measurements,” Opt. Express 4, 372–382 (1999), http://www.opticsexpress.org .
    [CrossRef]
  32. J. Lee, E. M. Sevick-Muraca, “Fluorescence-enhanced absorption imaging: noise tolerance characteristic comparison with conventional absorption and scattering imaging,” J. Biomed. Opt. 6(1), 58–67 (2001).
    [CrossRef]
  33. M. P. Moore, D. W. Kinne, “The surgical management of primary invasive breast cancer,” CA Cancer J. Clin. 45, 279–288 (1995).
    [CrossRef] [PubMed]
  34. D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
    [CrossRef] [PubMed]

2001 (1)

J. Lee, E. M. Sevick-Muraca, “Fluorescence-enhanced absorption imaging: noise tolerance characteristic comparison with conventional absorption and scattering imaging,” J. Biomed. Opt. 6(1), 58–67 (2001).
[CrossRef]

2000 (4)

D. J. Hawrysz, E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer agents,” Neoplasia 2, 388–417 (2000).
[CrossRef]

S. Achilefu, R. B. Dorchow, J. E. Bugaji, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, J. S. Reynolds, B. Muggenberger, R. H. Mayer, D. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for detection of normal and tumor tissue using continuous, near-infrared reflectance imaging,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

R. Roy, E. M. Sevick-Muraca, “Active constrained truncated Newton method for optical tomography,” J. Opt. Soc. Am. A 17, 1627–1641 (2000).
[CrossRef]

1999 (8)

R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography. I. Theory and Formulation,” Opt. Express 4, 353–371 (1999), http://www.opticsexpress.org .
[CrossRef]

R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography. II. Reconstructions from synthetic measurements,” Opt. Express 4, 372–382 (1999), http://www.opticsexpress.org .
[CrossRef]

T. O. McBride, B. Pogue, E. D. Gerety, S. G. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 5480–5490 (1999).
[CrossRef]

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

V. Chernomordik, V. D. Hattery, L. Gannot, A. H. Amir, “Inverse method 3-D reconstruction of localized in vivo fluorescence: application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 54, 930–935 (1999).
[CrossRef]

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

C. H. Tung, S. Bredow, U. Mahmood, R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescent probe for imaging,” Bioconjug. Chem. 10, 892–896 (1999).
[CrossRef] [PubMed]

R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nature Biotech. 4, 375–378 (1999).
[CrossRef]

1998 (3)

E. Marecos, R. Weissleder, A. Bogdanvo, “Anti-body mediated versus nontargeted delivery in human small cell lung carcinoma,” Bioconj. Chem. 9, 184–191 (1998).
[CrossRef]

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

X. Li, B. Chance, A. G. Yodh, “Fluorescence heterogeneities in turbid media, limits for detection, characterization, and comparison with absorption,” Appl. Opt. 37, 6833–6843 (1998).
[CrossRef]

1997 (5)

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from tissues and other random media,” Appl. Opt. 36, 2260–2272 (1997).
[CrossRef] [PubMed]

X. D. Zhu, S. P. Wei, X. W. Guo, “Imaging objects in tissue-like media with optical tagging and the diffuse photon differential transmittance,” J. Opt. Soc. Am. A 14, 300–305 (1997).
[CrossRef]

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photoch. Photobiol. 66, 55–64 (1997).
[CrossRef]

J. W. Chang, H. L. Graber, P. C. Ok, R. Aronson, S. L. Barbour, R. L. Barbour, “Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources,” IEEE Trans. Med. Imaging 16, 68–77 (1997).
[CrossRef] [PubMed]

K. Sakanti, M. Kashiwasake-Jibu, Y. Taka, S. M. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Non-invasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef]

1995 (1)

M. P. Moore, D. W. Kinne, “The surgical management of primary invasive breast cancer,” CA Cancer J. Clin. 45, 279–288 (1995).
[CrossRef] [PubMed]

1994 (2)

Achilefu, S.

S. Achilefu, R. B. Dorchow, J. E. Bugaji, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Amir, A. H.

V. Chernomordik, V. D. Hattery, L. Gannot, A. H. Amir, “Inverse method 3-D reconstruction of localized in vivo fluorescence: application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 54, 930–935 (1999).
[CrossRef]

Aronson, R.

J. W. Chang, H. L. Graber, P. C. Ok, R. Aronson, S. L. Barbour, R. L. Barbour, “Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources,” IEEE Trans. Med. Imaging 16, 68–77 (1997).
[CrossRef] [PubMed]

Ashikaga, T.

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Bando, T.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Barbour, R.

R. Barbour, H. L. Graber, “Diagnostic imaging with light, and beyond,” in Proceedings of the Annual International Conference of the IEEE on Engineering in Medicine and Biology (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 2.

Barbour, R. L.

J. W. Chang, H. L. Graber, P. C. Ok, R. Aronson, S. L. Barbour, R. L. Barbour, “Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources,” IEEE Trans. Med. Imaging 16, 68–77 (1997).
[CrossRef] [PubMed]

Barbour, S. L.

J. W. Chang, H. L. Graber, P. C. Ok, R. Aronson, S. L. Barbour, R. L. Barbour, “Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources,” IEEE Trans. Med. Imaging 16, 68–77 (1997).
[CrossRef] [PubMed]

Becker, A.

A. Becker, G. Schneider, B. Reiki, K. Lich, W. Smeller, “Localization of near-infrared contrast agents in tumors by intravital microscopy,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 112–118 (1999).
[CrossRef]

K. Licha, A. Becker, “New contrast agents for optical imaging: acid cleavable conjugates of cyanine dyes with Biomolecules,” in Biomedical Imaging, Reporters, Dyes and Instrumentation, D. J. Bornhop, C. H. Contag, E. M. Sevick-Muraca, eds., Proc. SPIE3600, 29–35 (1999).
[CrossRef]

Beitsch, P.

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Boas, D. A.

D. A. Boas, T. Gaudette, L. Wang, A. Y. Makan, W. Koroshetz, G. Sorenson, “Preliminary investigation into the use of diffuse optical tomography for monitoring and imaging stroke,” in Battlefield Biomedical Technologies, H. H. Pien, ed., Proc. SPIE3712, 56–61 (1999).
[CrossRef]

Bogdanov, A.

R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nature Biotech. 4, 375–378 (1999).
[CrossRef]

Bogdanvo, A.

E. Marecos, R. Weissleder, A. Bogdanvo, “Anti-body mediated versus nontargeted delivery in human small cell lung carcinoma,” Bioconj. Chem. 9, 184–191 (1998).
[CrossRef]

Bredow, S.

C. H. Tung, S. Bredow, U. Mahmood, R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescent probe for imaging,” Bioconjug. Chem. 10, 892–896 (1999).
[CrossRef] [PubMed]

Bugaji, J. E.

S. Achilefu, R. B. Dorchow, J. E. Bugaji, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Burch, C. L.

Chance, B.

X. Li, B. Chance, A. G. Yodh, “Fluorescence heterogeneities in turbid media, limits for detection, characterization, and comparison with absorption,” Appl. Opt. 37, 6833–6843 (1998).
[CrossRef]

N. Vasilis, A. G. Yodh, M. Schall, B. Chance, “Comparison between intrinsic and extrinsic contrast for malignancy detection using NIR mammography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. T. Tromberg, eds., Proc. SPIE3597, 565–570 (1999).
[CrossRef]

Chang, J. W.

J. W. Chang, H. L. Graber, P. C. Ok, R. Aronson, S. L. Barbour, R. L. Barbour, “Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources,” IEEE Trans. Med. Imaging 16, 68–77 (1997).
[CrossRef] [PubMed]

Chen, A. U.

Chernomordik, V.

V. Chernomordik, V. D. Hattery, L. Gannot, A. H. Amir, “Inverse method 3-D reconstruction of localized in vivo fluorescence: application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 54, 930–935 (1999).
[CrossRef]

Chernomorik, V.

D. Hattery, V. Chernomorik, I. Gannot, M. Loew, A. H. Gandjbakhche, “Fluorescence measurement of localized, deeply embedded physiological processes,” in Physiology and Function from Multidimensional Images, C.-T. Chen, A. V. Clough, eds., Proc. SPIE3978, 377–382 (2000).

Colak, S. B.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Dorchow, R. B.

S. Achilefu, R. B. Dorchow, J. E. Bugaji, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Dowlatshahi, K.

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Feldman, S.

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Foster, R.

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Gadd, M.

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Gambit,

Gambit, Fidap 8 user’s manual (Fluent, Inc., 500 Davies Street, Suite 600, Evanston, Ill. 60201, 1998).

Gandjbakhche, A. H.

D. Hattery, V. Chernomorik, I. Gannot, M. Loew, A. H. Gandjbakhche, “Fluorescence measurement of localized, deeply embedded physiological processes,” in Physiology and Function from Multidimensional Images, C.-T. Chen, A. V. Clough, eds., Proc. SPIE3978, 377–382 (2000).

Gannot, I.

D. Hattery, V. Chernomorik, I. Gannot, M. Loew, A. H. Gandjbakhche, “Fluorescence measurement of localized, deeply embedded physiological processes,” in Physiology and Function from Multidimensional Images, C.-T. Chen, A. V. Clough, eds., Proc. SPIE3978, 377–382 (2000).

Gannot, L.

V. Chernomordik, V. D. Hattery, L. Gannot, A. H. Amir, “Inverse method 3-D reconstruction of localized in vivo fluorescence: application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 54, 930–935 (1999).
[CrossRef]

Gaudette, T.

D. A. Boas, T. Gaudette, L. Wang, A. Y. Makan, W. Koroshetz, G. Sorenson, “Preliminary investigation into the use of diffuse optical tomography for monitoring and imaging stroke,” in Battlefield Biomedical Technologies, H. H. Pien, ed., Proc. SPIE3712, 56–61 (1999).
[CrossRef]

Gerety, E. D.

Graber, H. L.

J. W. Chang, H. L. Graber, P. C. Ok, R. Aronson, S. L. Barbour, R. L. Barbour, “Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources,” IEEE Trans. Med. Imaging 16, 68–77 (1997).
[CrossRef] [PubMed]

R. Barbour, H. L. Graber, “Diagnostic imaging with light, and beyond,” in Proceedings of the Annual International Conference of the IEEE on Engineering in Medicine and Biology (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 2.

Guo, X. W.

Gurfinkel, M.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, J. S. Reynolds, B. Muggenberger, R. H. Mayer, D. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for detection of normal and tumor tissue using continuous, near-infrared reflectance imaging,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Harlow, J. S.

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Hattery, D.

D. Hattery, V. Chernomorik, I. Gannot, M. Loew, A. H. Gandjbakhche, “Fluorescence measurement of localized, deeply embedded physiological processes,” in Physiology and Function from Multidimensional Images, C.-T. Chen, A. V. Clough, eds., Proc. SPIE3978, 377–382 (2000).

Hattery, V. D.

V. Chernomordik, V. D. Hattery, L. Gannot, A. H. Amir, “Inverse method 3-D reconstruction of localized in vivo fluorescence: application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 54, 930–935 (1999).
[CrossRef]

Hawrysz, D.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, J. S. Reynolds, B. Muggenberger, R. H. Mayer, D. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for detection of normal and tumor tissue using continuous, near-infrared reflectance imaging,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Hawrysz, D. J.

D. J. Hawrysz, E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer agents,” Neoplasia 2, 388–417 (2000).
[CrossRef]

Hayashi, S.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Hooft, G. W.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Hoogenraad, J. H.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Hutchinson, C. L.

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photoch. Photobiol. 66, 55–64 (1997).
[CrossRef]

Ichikawa, S.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Ii, K.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Imaizumi, K.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

Ito, S.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Kashiwasake-Jibu, M.

K. Sakanti, M. Kashiwasake-Jibu, Y. Taka, S. M. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Non-invasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef]

Kinne, D. W.

M. P. Moore, D. W. Kinne, “The surgical management of primary invasive breast cancer,” CA Cancer J. Clin. 45, 279–288 (1995).
[CrossRef] [PubMed]

Klimberg, V. S.

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Koroshetz, W.

D. A. Boas, T. Gaudette, L. Wang, A. Y. Makan, W. Koroshetz, G. Sorenson, “Preliminary investigation into the use of diffuse optical tomography for monitoring and imaging stroke,” in Battlefield Biomedical Technologies, H. H. Pien, ed., Proc. SPIE3712, 56–61 (1999).
[CrossRef]

Krag, D.

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Kuijpers, F. A.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Kusaka, Y.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Kusminsky, R.

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Lee, J.

J. Lee, E. M. Sevick-Muraca, “Fluorescence-enhanced absorption imaging: noise tolerance characteristic comparison with conventional absorption and scattering imaging,” J. Biomed. Opt. 6(1), 58–67 (2001).
[CrossRef]

Li, X.

Lich, K.

A. Becker, G. Schneider, B. Reiki, K. Lich, W. Smeller, “Localization of near-infrared contrast agents in tumors by intravital microscopy,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 112–118 (1999).
[CrossRef]

Licha, K.

K. Licha, A. Becker, “New contrast agents for optical imaging: acid cleavable conjugates of cyanine dyes with Biomolecules,” in Biomedical Imaging, Reporters, Dyes and Instrumentation, D. J. Bornhop, C. H. Contag, E. M. Sevick-Muraca, eds., Proc. SPIE3600, 29–35 (1999).
[CrossRef]

Loew, M.

D. Hattery, V. Chernomorik, I. Gannot, M. Loew, A. H. Gandjbakhche, “Fluorescence measurement of localized, deeply embedded physiological processes,” in Physiology and Function from Multidimensional Images, C.-T. Chen, A. V. Clough, eds., Proc. SPIE3978, 377–382 (2000).

Lopez, G.

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photoch. Photobiol. 66, 55–64 (1997).
[CrossRef]

Mahmood, U.

C. H. Tung, S. Bredow, U. Mahmood, R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescent probe for imaging,” Bioconjug. Chem. 10, 892–896 (1999).
[CrossRef] [PubMed]

R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nature Biotech. 4, 375–378 (1999).
[CrossRef]

Makan, A. Y.

D. A. Boas, T. Gaudette, L. Wang, A. Y. Makan, W. Koroshetz, G. Sorenson, “Preliminary investigation into the use of diffuse optical tomography for monitoring and imaging stroke,” in Battlefield Biomedical Technologies, H. H. Pien, ed., Proc. SPIE3712, 56–61 (1999).
[CrossRef]

Marecos, E.

E. Marecos, R. Weissleder, A. Bogdanvo, “Anti-body mediated versus nontargeted delivery in human small cell lung carcinoma,” Bioconj. Chem. 9, 184–191 (1998).
[CrossRef]

Matsunaga, Y.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Mayer, R. H.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, J. S. Reynolds, B. Muggenberger, R. H. Mayer, D. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for detection of normal and tumor tissue using continuous, near-infrared reflectance imaging,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

McBride, T. O.

Moffat, F.

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Moore, M. P.

M. P. Moore, D. W. Kinne, “The surgical management of primary invasive breast cancer,” CA Cancer J. Clin. 45, 279–288 (1995).
[CrossRef] [PubMed]

Muggenberger, B.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, J. S. Reynolds, B. Muggenberger, R. H. Mayer, D. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for detection of normal and tumor tissue using continuous, near-infrared reflectance imaging,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Muguruma, N.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Nakamura, K.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Ok, P. C.

J. W. Chang, H. L. Graber, P. C. Ok, R. Aronson, S. L. Barbour, R. L. Barbour, “Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources,” IEEE Trans. Med. Imaging 16, 68–77 (1997).
[CrossRef] [PubMed]

Okamura, S.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Osterberg, U. L.

Paithankar, D. Y.

Patterson, M. S.

Paulsen, K. D.

Pogue, B.

Pogue, B. W.

Poplack, S. G.

Rajagopalan, R.

S. Achilefu, R. B. Dorchow, J. E. Bugaji, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Ralston, W.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, J. S. Reynolds, B. Muggenberger, R. H. Mayer, D. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for detection of normal and tumor tissue using continuous, near-infrared reflectance imaging,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Reiki, B.

A. Becker, G. Schneider, B. Reiki, K. Lich, W. Smeller, “Localization of near-infrared contrast agents in tumors by intravital microscopy,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 112–118 (1999).
[CrossRef]

Reynolds, J. S.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, J. S. Reynolds, B. Muggenberger, R. H. Mayer, D. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for detection of normal and tumor tissue using continuous, near-infrared reflectance imaging,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photoch. Photobiol. 66, 55–64 (1997).
[CrossRef]

Roy, R.

Sakanti, K.

K. Sakanti, M. Kashiwasake-Jibu, Y. Taka, S. M. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Non-invasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef]

Schall, M.

N. Vasilis, A. G. Yodh, M. Schall, B. Chance, “Comparison between intrinsic and extrinsic contrast for malignancy detection using NIR mammography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. T. Tromberg, eds., Proc. SPIE3597, 565–570 (1999).
[CrossRef]

Schneider, G.

A. Becker, G. Schneider, B. Reiki, K. Lich, W. Smeller, “Localization of near-infrared contrast agents in tumors by intravital microscopy,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 112–118 (1999).
[CrossRef]

Sevick-Muraca, E. M.

J. Lee, E. M. Sevick-Muraca, “Fluorescence-enhanced absorption imaging: noise tolerance characteristic comparison with conventional absorption and scattering imaging,” J. Biomed. Opt. 6(1), 58–67 (2001).
[CrossRef]

D. J. Hawrysz, E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer agents,” Neoplasia 2, 388–417 (2000).
[CrossRef]

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, J. S. Reynolds, B. Muggenberger, R. H. Mayer, D. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for detection of normal and tumor tissue using continuous, near-infrared reflectance imaging,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

R. Roy, E. M. Sevick-Muraca, “Active constrained truncated Newton method for optical tomography,” J. Opt. Soc. Am. A 17, 1627–1641 (2000).
[CrossRef]

R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography. II. Reconstructions from synthetic measurements,” Opt. Express 4, 372–382 (1999), http://www.opticsexpress.org .
[CrossRef]

R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for absorption and fluorescence optical tomography. I. Theory and Formulation,” Opt. Express 4, 353–371 (1999), http://www.opticsexpress.org .
[CrossRef]

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photoch. Photobiol. 66, 55–64 (1997).
[CrossRef]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from tissues and other random media,” Appl. Opt. 36, 2260–2272 (1997).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, C. L. Burch, “The origin of phosphorescent and fluorescent signals in tissues,” Opt. Lett. 19, 1928–1930 (1994).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, D. Y. Paithankar, “Fluorescence imaging system and measurement,” U.S. patent5,865,754 (2February1999).

Shibamura, S.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Shimizu, K.

K. Sakanti, M. Kashiwasake-Jibu, Y. Taka, S. M. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Non-invasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef]

Shriver, C.

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Smeller, W.

A. Becker, G. Schneider, B. Reiki, K. Lich, W. Smeller, “Localization of near-infrared contrast agents in tumors by intravital microscopy,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 112–118 (1999).
[CrossRef]

Sorenson, G.

D. A. Boas, T. Gaudette, L. Wang, A. Y. Makan, W. Koroshetz, G. Sorenson, “Preliminary investigation into the use of diffuse optical tomography for monitoring and imaging stroke,” in Battlefield Biomedical Technologies, H. H. Pien, ed., Proc. SPIE3712, 56–61 (1999).
[CrossRef]

Tada, Y.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Taka, Y.

K. Sakanti, M. Kashiwasake-Jibu, Y. Taka, S. M. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Non-invasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef]

Takesako, K.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Taoka, S.

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Taylor, R. L.

O. C. Zienkiewez, R. L. Taylor, The Finite Element Methods in Engineering Science (McGraw-Hill, New York, 1989).

Thompson, A. B.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, J. S. Reynolds, B. Muggenberger, R. H. Mayer, D. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for detection of normal and tumor tissue using continuous, near-infrared reflectance imaging,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Troy, T. L.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, J. S. Reynolds, B. Muggenberger, R. H. Mayer, D. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for detection of normal and tumor tissue using continuous, near-infrared reflectance imaging,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photoch. Photobiol. 66, 55–64 (1997).
[CrossRef]

Tung, C. H.

C. H. Tung, S. Bredow, U. Mahmood, R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescent probe for imaging,” Bioconjug. Chem. 10, 892–896 (1999).
[CrossRef] [PubMed]

R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nature Biotech. 4, 375–378 (1999).
[CrossRef]

van der Linden, E. S.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

van der Mark, M. B.

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

Vasilis, N.

N. Vasilis, A. G. Yodh, M. Schall, B. Chance, “Comparison between intrinsic and extrinsic contrast for malignancy detection using NIR mammography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. T. Tromberg, eds., Proc. SPIE3597, 565–570 (1999).
[CrossRef]

Wang, L.

D. A. Boas, T. Gaudette, L. Wang, A. Y. Makan, W. Koroshetz, G. Sorenson, “Preliminary investigation into the use of diffuse optical tomography for monitoring and imaging stroke,” in Battlefield Biomedical Technologies, H. H. Pien, ed., Proc. SPIE3712, 56–61 (1999).
[CrossRef]

Wang, S. M.

K. Sakanti, M. Kashiwasake-Jibu, Y. Taka, S. M. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Non-invasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef]

Weaver, D.

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Wei, S. P.

Weissleder, R.

C. H. Tung, S. Bredow, U. Mahmood, R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescent probe for imaging,” Bioconjug. Chem. 10, 892–896 (1999).
[CrossRef] [PubMed]

R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nature Biotech. 4, 375–378 (1999).
[CrossRef]

E. Marecos, R. Weissleder, A. Bogdanvo, “Anti-body mediated versus nontargeted delivery in human small cell lung carcinoma,” Bioconj. Chem. 9, 184–191 (1998).
[CrossRef]

Whitworth, P.

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Yamamoto, K.

K. Sakanti, M. Kashiwasake-Jibu, Y. Taka, S. M. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Non-invasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef]

Yodh, A. G.

X. Li, B. Chance, A. G. Yodh, “Fluorescence heterogeneities in turbid media, limits for detection, characterization, and comparison with absorption,” Appl. Opt. 37, 6833–6843 (1998).
[CrossRef]

N. Vasilis, A. G. Yodh, M. Schall, B. Chance, “Comparison between intrinsic and extrinsic contrast for malignancy detection using NIR mammography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. T. Tromberg, eds., Proc. SPIE3597, 565–570 (1999).
[CrossRef]

Zhu, X. D.

Zienkiewez, O. C.

O. C. Zienkiewez, R. L. Taylor, The Finite Element Methods in Engineering Science (McGraw-Hill, New York, 1989).

Zuo, H.

K. Sakanti, M. Kashiwasake-Jibu, Y. Taka, S. M. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Non-invasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef]

Appl. Opt. (4)

Bioconj. Chem. (1)

E. Marecos, R. Weissleder, A. Bogdanvo, “Anti-body mediated versus nontargeted delivery in human small cell lung carcinoma,” Bioconj. Chem. 9, 184–191 (1998).
[CrossRef]

Bioconjug. Chem. (1)

C. H. Tung, S. Bredow, U. Mahmood, R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescent probe for imaging,” Bioconjug. Chem. 10, 892–896 (1999).
[CrossRef] [PubMed]

CA Cancer J. Clin. (1)

M. P. Moore, D. W. Kinne, “The surgical management of primary invasive breast cancer,” CA Cancer J. Clin. 45, 279–288 (1995).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

V. Chernomordik, V. D. Hattery, L. Gannot, A. H. Amir, “Inverse method 3-D reconstruction of localized in vivo fluorescence: application to Sjogren syndrome,” IEEE J. Sel. Top. Quantum Electron. 54, 930–935 (1999).
[CrossRef]

S. B. Colak, M. B. van der Mark, G. W. Hooft, J. H. Hoogenraad, E. S. van der Linden, F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999).
[CrossRef]

IEEE Trans. Med. Imaging (1)

J. W. Chang, H. L. Graber, P. C. Ok, R. Aronson, S. L. Barbour, R. L. Barbour, “Optical imaging of anatomical maps derived from magnetic resonance images using time-independent optical sources,” IEEE Trans. Med. Imaging 16, 68–77 (1997).
[CrossRef] [PubMed]

Intern. Med. (1)

N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: a novel diagnostic method for microcancers in the digestive tracts,” Intern. Med. 38, 537–342 (1999).
[CrossRef] [PubMed]

Invest. Radiol. (1)

S. Achilefu, R. B. Dorchow, J. E. Bugaji, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

J. Lee, E. M. Sevick-Muraca, “Fluorescence-enhanced absorption imaging: noise tolerance characteristic comparison with conventional absorption and scattering imaging,” J. Biomed. Opt. 6(1), 58–67 (2001).
[CrossRef]

J. Neurosurg. (1)

K. Sakanti, M. Kashiwasake-Jibu, Y. Taka, S. M. Wang, H. Zuo, K. Yamamoto, K. Shimizu, “Non-invasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence,” J. Neurosurg. 87, 738–745 (1997).
[CrossRef]

J. Opt. Soc. Am. A (2)

N. Engl. J. Med. (1)

D. Krag, D. Weaver, T. Ashikaga, F. Moffat, V. S. Klimberg, C. Shriver, S. Feldman, R. Kusminsky, M. Gadd, J. S. Harlow, P. Beitsch, P. Whitworth, R. Foster, K. Dowlatshahi, “The sentinel node in breast cancer—a multicenter validation study,” N. Engl. J. Med. 339, 941–946 (1998).
[CrossRef] [PubMed]

Nature Biotech. (1)

R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nature Biotech. 4, 375–378 (1999).
[CrossRef]

Neoplasia (1)

D. J. Hawrysz, E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer agents,” Neoplasia 2, 388–417 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Photoch. Photobiol. (1)

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photoch. Photobiol. 66, 55–64 (1997).
[CrossRef]

Photochem. Photobiol. (1)

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, J. S. Reynolds, B. Muggenberger, R. H. Mayer, D. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for detection of normal and tumor tissue using continuous, near-infrared reflectance imaging,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Other (10)

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).

Gambit, Fidap 8 user’s manual (Fluent, Inc., 500 Davies Street, Suite 600, Evanston, Ill. 60201, 1998).

O. C. Zienkiewez, R. L. Taylor, The Finite Element Methods in Engineering Science (McGraw-Hill, New York, 1989).

D. Hattery, V. Chernomorik, I. Gannot, M. Loew, A. H. Gandjbakhche, “Fluorescence measurement of localized, deeply embedded physiological processes,” in Physiology and Function from Multidimensional Images, C.-T. Chen, A. V. Clough, eds., Proc. SPIE3978, 377–382 (2000).

E. M. Sevick-Muraca, D. Y. Paithankar, “Fluorescence imaging system and measurement,” U.S. patent5,865,754 (2February1999).

R. Barbour, H. L. Graber, “Diagnostic imaging with light, and beyond,” in Proceedings of the Annual International Conference of the IEEE on Engineering in Medicine and Biology (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 2.

N. Vasilis, A. G. Yodh, M. Schall, B. Chance, “Comparison between intrinsic and extrinsic contrast for malignancy detection using NIR mammography,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. T. Tromberg, eds., Proc. SPIE3597, 565–570 (1999).
[CrossRef]

D. A. Boas, T. Gaudette, L. Wang, A. Y. Makan, W. Koroshetz, G. Sorenson, “Preliminary investigation into the use of diffuse optical tomography for monitoring and imaging stroke,” in Battlefield Biomedical Technologies, H. H. Pien, ed., Proc. SPIE3712, 56–61 (1999).
[CrossRef]

A. Becker, G. Schneider, B. Reiki, K. Lich, W. Smeller, “Localization of near-infrared contrast agents in tumors by intravital microscopy,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 112–118 (1999).
[CrossRef]

K. Licha, A. Becker, “New contrast agents for optical imaging: acid cleavable conjugates of cyanine dyes with Biomolecules,” in Biomedical Imaging, Reporters, Dyes and Instrumentation, D. J. Bornhop, C. H. Contag, E. M. Sevick-Muraca, eds., Proc. SPIE3600, 29–35 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Geometry of a 3D frustum; the radii of the base and the upper face are 3 cm and 0.5 cm, respectively, and the height is 4 cm.

Fig. 2
Fig. 2

Position of sources (S) and detectors (D) on the surface of the frustum at different sections.

Fig. 3
Fig. 3

Actual distribution of absorption, μ a xf , at (a) plane 1, (b) plane 2, and (c) plane 3.

Fig. 4
Fig. 4

Reconstructed distribution of absorption, μ a xf , at (a) plane 1, (b) plane 2, and (c) plane 3, with unconstrained optimization.

Fig. 5
Fig. 5

Reconstructed distribution of absorption, μ a xi , at (a) plane 1, (b) plane 2, and plane 3, with simple-bound constrained optimization.

Fig. 6
Fig. 6

Sum of the square error of the absorption coefficients as a function of iterations of the truncated Newton method.

Fig. 7
Fig. 7

Actual distribution of lifetime, τ, at (a) plane 1, (b) plane 2, and (C) plane 3.

Fig. 8
Fig. 8

Reconstructed distribution of lifetime, τ, at (a) plane 1, (b) plane 2, and (c) plane 3, with the unconstrained optimization method.

Fig. 9
Fig. 9

Reconstructed distribution of lifetime, τ, at (a) plane 1, (b) plane 2, and (c) plane 3, with simple-bound constrained optimization method.

Tables (2)

Tables Icon

Table 1 Optical Parameters Used for the Optimization Problems [Eqs. (1) and (2)]

Tables Icon

Table 2 Errors and Iteration Number for Reconstruction of (a) Absorption Coefficients μaxf (Problem 1) with Unconstrained and Simple Bound Constrained Optimization Methods and of (b) Lifetime τ (Problem 2) with Unconstrained and Simple Bound Constrained Optimization Methods

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

-·DxrΦxr,ω+iωc+μaxir+μaxfrΦxr,ω=0  on Ω,
-·DmrΦmr, ω+iωc+μamrΦmr, ω=ϕμaxf11-iωτ Φxr, ω on Ω,
2DxΦxn+Φx+Sδr¯, r¯S=0  on dΩ,
Φx=i=1i=4 LiΦxi,
Li=16Vai+bix+ciy+diz,  i=1, 2, 3, 4,
KΦ¯x,m=b.
Eμ¯axf, τ¯=12l=1Nqj=1jlNBΦmljc - ΦmljmeΦmljme×Φm*ljc - Φm*ljmeΦm*ljme.
SNR=10 log|M|22σ2,
σ2=|M|22 10-SNR/10,
Φx,mRe=Φx,mRe+σ2G0, 1,
Φx,mIm=Φx,mIm+σ2G0, 1,
a Sum of square errors=Ωμaactual-μac2,
b Mean of relative error=Ωμaactual-μacμaactualn1/2,
c Standard deviation=Ωμaactual-μacμaactual2n1/2,
liμaiui,  i=1,, N,
liτiui,  i=1,, N.
Bμa=i:liμaili+, Bμa=i:ui-μaiui, Cμa=i:li+μaiui-,
li+<ui-  for i=1,, N.

Metrics