Abstract

We present an efficient and accurate method for synthesis of optical thin-film structures. The method is based on a differential inverse-scattering algorithm and considers therefore both phase and amplitude reflectance data. We apply the algorithm to the synthesis of filters with arbitrary index layers and two-material filters consisting of only high- and low-index layers. The layered structure is approximated by a stack of discrete reflectors with equal distance between all reflectors. This mirror stack is in turn determined from the desired, complex reflection spectrum by a layer-peeling inverse-scattering algorithm. The complexity of the design algorithm is approximately the same as that of the forward problem of computing the spectrum from a known structure.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription