Abstract

Ion-beam-sputtered TiO2–SiO2 mixed films with 17% SiO2 concentration were used as high-refractive-index layers in a multilayered-stack dielectric mirror. Experimental results indicated that total loss of the as-deposited mirror was 34% lower than that of the as-deposited conventional mirrors with pure TiO2 films used as high-refractive-index layers. In addition, annealing reduced total loss of the mirrors. Although decreasing with an increasing annealing temperature, total loss of the conventional mirrors dramatically increased above ∼200 °C annealing temperature, owing to increased scattering from an amorphous-to-crystalline phase transition in the TiO2 films. In addition, total loss of the mirrors with the mixed films continuously decreased with an increasing annealing temperature up to 400 °C without the phase transition. Total loss was reduced 88% by means of decreasing absorption in the mixed films. Moreover, the annealed mirror with mixed films was better than both the as-deposited mirror and the conventional mirror with pure films in terms of laser-damage resistance.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chao, W. L. Lim, J. A. Hammond, “Lock-in growth in a ring laser gyro,” in Physics of Optical Ring Gyros, S. F. Jacobs, M. Sargent, M. O. Scully, J. Simpson, V. Sanders, J. E. Killpatrick, eds., Proc. SPIE487, 50–57 (1984).
    [CrossRef]
  2. Internal Rep. (Northrop Corporation, Los Angeles, Calif., 1984).
  3. G. Rempe, R. J. Thompson, H. J. Kimble, R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992).
    [CrossRef] [PubMed]
  4. D. T. Wei, “Ion beam interference coating for ultralow optics loss,” Appl. Opt. 28, 2813–2816 (1989).
    [CrossRef] [PubMed]
  5. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgagno, B. Lazarides, C. K. Carniglia, R. A. Schnell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, A. Saxer, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt. 28, 3303–3317 (1989).
    [CrossRef] [PubMed]
  6. W.-H. Wang, S. Chao, “Annealing effect on ion-beam-sputtered titanium dioxide film,” Opt. Lett. 23, 1417–1419 (1998).
    [CrossRef]
  7. S. Chao, C.-K. Chang, J.-S. Chen, “TiO2–SiO2 mixed films prepared by fast alternating sputter method,” Appl. Opt. 30, 3233–3238 (1991).
    [CrossRef] [PubMed]
  8. J.-S. Chen, S. Chao, J.-S. Kao, H. Niu, C.-H. Chen, “TiO2–SiO2 mixed films prepared by double electron-beam coevaporation method,” Appl. Opt. 35, 90–96 (1996).
    [CrossRef] [PubMed]
  9. S. Chao, W.-H. Wang, M.-Y. Hsu, L.-C. Wang, “Characteristics of ion-beam-sputtered high-refractive-index TiO2–SiO2 mixed films,” J. Opt. Soc. Am. A 16, 1477–1483 (1999).
    [CrossRef]
  10. W.-H. Wang, Ph.D. dissertation (Electrical Engineering Department, National Tsing Hua University, Hsin-Chu, Taiwan, 1999).
  11. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), p. 131.

1999 (1)

1998 (1)

1996 (1)

1992 (1)

1991 (1)

1989 (2)

Albrand, G.

Allen, T. H.

Bennett, J. M.

Borgagno, J. P.

Carniglia, C. K.

Chang, C.-K.

Chao, S.

Chen, C.-H.

Chen, J.-S.

Guenther, K. H.

Hammond, J. A.

S. Chao, W. L. Lim, J. A. Hammond, “Lock-in growth in a ring laser gyro,” in Physics of Optical Ring Gyros, S. F. Jacobs, M. Sargent, M. O. Scully, J. Simpson, V. Sanders, J. E. Killpatrick, eds., Proc. SPIE487, 50–57 (1984).
[CrossRef]

Hsu, M.-Y.

Kao, J.-S.

Kimble, H. J.

Lalezari, R.

Lazarides, B.

Lim, W. L.

S. Chao, W. L. Lim, J. A. Hammond, “Lock-in growth in a ring laser gyro,” in Physics of Optical Ring Gyros, S. F. Jacobs, M. Sargent, M. O. Scully, J. Simpson, V. Sanders, J. E. Killpatrick, eds., Proc. SPIE487, 50–57 (1984).
[CrossRef]

Niu, H.

Pelletier, E.

Rempe, G.

Saxer, A.

Schnell, R. A.

Thompson, R. J.

Tuttle-Hart, T.

Wang, L.-C.

Wang, W.-H.

Wei, D. T.

Yariv, A.

A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), p. 131.

Appl. Opt. (4)

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Other (4)

S. Chao, W. L. Lim, J. A. Hammond, “Lock-in growth in a ring laser gyro,” in Physics of Optical Ring Gyros, S. F. Jacobs, M. Sargent, M. O. Scully, J. Simpson, V. Sanders, J. E. Killpatrick, eds., Proc. SPIE487, 50–57 (1984).
[CrossRef]

Internal Rep. (Northrop Corporation, Los Angeles, Calif., 1984).

W.-H. Wang, Ph.D. dissertation (Electrical Engineering Department, National Tsing Hua University, Hsin-Chu, Taiwan, 1999).

A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991), p. 131.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of cavity ring-down setup.

Fig. 2
Fig. 2

Percentage change of total loss versus annealing temperature. Triangles, mirror with pure TiO2 film; circles, mirror with TiO2–SiO2 mixed film.

Fig. 3
Fig. 3

Transmission spectra of the as-deposited mirror (solid black curve), mirrors after 200 °C (solid gray curve), 300 °C (long-dashed curve), and 400 °C (short-dashed curve) annealing.

Fig. 4
Fig. 4

Electron Spectroscopy for Chemical Analysis concentration depth profiles of (A) the as-deposited mirror and (B) mirror after 400 °C annealing. Diamonds, titanium; squares, silicon; triangles, oxygen.

Tables (3)

Tables Icon

Table 1 Comparison of Mirror Performance

Tables Icon

Table 2 Refractive Index (n), Extinction Coefficient (k), Relative X-Ray Diffraction Intensity I/I 0 for Anatase (101) Peak, Cut-Off Frequency (λc), and rms Surface Roughness of the Pure TiO 2 Filma

Tables Icon

Table 3 Refractive Index (n), Extinction Coefficient (k), Relative X-Ray Diffraction Intensity I/I0 for Anatase (101) Peak, Cut-Off Frequency (λc), and rms Surface Roughness of 17% SiO2 Content TiO2–SiO2 Mixed Film a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τc=l/C1-RARB1/2,

Metrics