Abstract

We discuss some properties of dielectric gratings with period comparable with the illuminating wavelength for slanted illumination (this illumination geometry is often referred to as concical mounting). We demonstrate the usefulness of such an illuminating geometry. We show that the threshold period (under which only the zeroth transmission and reflection orders are nonevanescent) can be significantly higher, thereby easing fabrication constraints, and that this illumination setup makes it possible to design achromatic phase retarders. Such a design, for an achromatic quarter-wave plate with λ/60 uniformity of the retardation phase in the 0.47–0.63-µm wavelength interval, is demonstrated.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), Chap. 14, pp. 705–708.
  2. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 3.
  3. S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  4. D. Brundrett, E. Glytsis, T. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33, 2695–2706 (1994).
    [CrossRef] [PubMed]
  5. M. Moharam, T. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983).
    [CrossRef]
  6. I. Richter, P. Sun, F. Xu, Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34, 2421–2429 (1995).
    [CrossRef] [PubMed]
  7. Catalog of Newport (Newport Corporation, Irvine, Calif., 2000), pp. 8–28.
  8. Ch. Haggans, L. Li, T. Fujita, R. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
    [CrossRef]
  9. Ch. Haggans, L. Li, R. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
    [CrossRef]

1995 (1)

1994 (1)

1993 (2)

Ch. Haggans, L. Li, T. Fujita, R. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
[CrossRef]

Ch. Haggans, L. Li, R. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
[CrossRef]

1983 (1)

1956 (1)

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), Chap. 14, pp. 705–708.

Brundrett, D.

Fainman, Y.

Fujita, T.

Ch. Haggans, L. Li, T. Fujita, R. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
[CrossRef]

Gaylord, T.

Glytsis, E.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 3.

Haggans, Ch.

Ch. Haggans, L. Li, T. Fujita, R. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
[CrossRef]

Ch. Haggans, L. Li, R. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
[CrossRef]

Kostuk, R.

Ch. Haggans, L. Li, R. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
[CrossRef]

Ch. Haggans, L. Li, T. Fujita, R. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
[CrossRef]

Li, L.

Ch. Haggans, L. Li, T. Fujita, R. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
[CrossRef]

Ch. Haggans, L. Li, R. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
[CrossRef]

Moharam, M.

Richter, I.

Rytov, S.

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Sun, P.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), Chap. 14, pp. 705–708.

Xu, F.

Appl. Opt. (2)

J. Mod. Opt. (1)

Ch. Haggans, L. Li, T. Fujita, R. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Sov. Phys. JETP (1)

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other (3)

Catalog of Newport (Newport Corporation, Irvine, Calif., 2000), pp. 8–28.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), Chap. 14, pp. 705–708.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illuminating geometry of a dielectric grating.

Fig. 2
Fig. 2

Comparison between zero-order EMT and RCWA for gratings with different grating periods. Δψ as a function of grating thickness.

Fig. 3
Fig. 3

Δψ as a function of grating thickness, for λ = 0.47, 0.55, and 0.67 µm and for different grating periods. The illumination parameters are ϕ = 90°, θ = 60°.

Fig. 4
Fig. 4

Achromatic phase retarder. Δψ as a function of illumination wavelength.

Fig. 5
Fig. 5

Achromatic phase retarder. TE and TM efficiencies as a function of illumination wavelength.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Λth=λnI sin θ cos ϕ+nII2-nI2 sin2 θ sin2 ϕ1/2,
nTE=fn22+1-fn121/2,
nTM=fn2-2+1-fn1-2-1/2,
Δψ=argnTEnI+nIIcos2πλnTEt+inInII+nTE2sin2πλnTEt-argnTMnI+nIIcos2πλnTMt+inInII+nTM2sin2πλnTMt,
Δψλ, t=2π/λnTE-nTMt.

Metrics