Abstract

We have designed and tested subwavelength diffractive optical elements consisting of surface-relief gratings made by microcontact printing of self-assembled monolayers. The first device is a beam deflector for 1.55-µm operation consisting of a surface-relief grating made up of eight pillars over one period (9.3 µm) of the grating. The widths of the pillars vary to approximate a linear phase profile within each grating period. The second device is a quarter-wave plate for 632.8-nm operation consisting of a subwavelength surface-relief grating with a 300-nm period and 58% duty cycle.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998).
    [CrossRef]
  2. J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–475 (1996).
    [CrossRef]
  3. T. K. Whidden, D. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology 7, 447–451 (1996).
    [CrossRef]
  4. A. Kumar, G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2004 (1993).
    [CrossRef]
  5. J. L. Wilbur, E. Kim, Y. Xia, G. M. Whitesides, “Lithographic molding: a convenient route to structures with sub-micrometer dimensions,” Adv. Mater. 7, 649–652 (1995).
    [CrossRef]
  6. P. M. St. John, H. G. Craighead, “Microcontact printing and pattern transfer using trichlorosilanes on oxide substrates,” Appl. Phys. Lett. 68, 1022–1024 (1996).
    [CrossRef]
  7. A. Kumar, H. A. Biebuyck, G. M. Whitesides, “Patterning self-assembled monolayers: applications in material science,” Langmuir 10, 1498–1511 (1994).
    [CrossRef]
  8. H. A. Biebuyck, N. B. Larsen, E. Delamarche, B. Michel, “Lithography beyond light: microcontact printing with monolayer resits,” IBM J. Res. Dev. 41, 159–170 (1997).
    [CrossRef]
  9. H. Dammann, “Blazed synthetic phase-only holograms,” Optik 31, 95–104 (1970).
  10. M. E. Warren, R. E. Smith, G. A. Vawter, J. R. Wendt, “High-efficiency subwavelength diffractive optical element in GaAs for 975 nm,” Opt. Lett. 20, 1441–1443 (1995).
    [CrossRef] [PubMed]
  11. Z. Zhou, T. Drabik, “Optimized binary, phase-only, diffractive optical element with subwavelength features for 1.55 µm,” J. Opt. Soc. Am. A 12, 1104–1112 (1995).
    [CrossRef]
  12. G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” (Lincoln Laboratory, MIT, Lexington, Mass., 1989).
  13. W. Stork, N. Streibl, H. Haidner, P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 16, 1921–1923 (1991).
    [CrossRef] [PubMed]
  14. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  15. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
    [CrossRef]
  16. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  17. Subroutine DBCONF from International Mathematics and Statistics Library, Houston, Tex.
  18. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  19. D. C. Flanders, “Submicron periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
    [CrossRef]
  20. A. G. Lopez, H. G. Craighead, “Wave-plate polarizing beam splitter based on a form-birefringent multiplayer grating,” Opt. Lett. 23, 1627–1629 (1998).
    [CrossRef]
  21. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  22. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).

1998 (2)

1997 (1)

H. A. Biebuyck, N. B. Larsen, E. Delamarche, B. Michel, “Lithography beyond light: microcontact printing with monolayer resits,” IBM J. Res. Dev. 41, 159–170 (1997).
[CrossRef]

1996 (3)

P. M. St. John, H. G. Craighead, “Microcontact printing and pattern transfer using trichlorosilanes on oxide substrates,” Appl. Phys. Lett. 68, 1022–1024 (1996).
[CrossRef]

J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–475 (1996).
[CrossRef]

T. K. Whidden, D. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology 7, 447–451 (1996).
[CrossRef]

1995 (4)

1994 (1)

A. Kumar, H. A. Biebuyck, G. M. Whitesides, “Patterning self-assembled monolayers: applications in material science,” Langmuir 10, 1498–1511 (1994).
[CrossRef]

1993 (1)

A. Kumar, G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2004 (1993).
[CrossRef]

1991 (1)

1983 (1)

D. C. Flanders, “Submicron periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

1982 (1)

1981 (1)

1970 (1)

H. Dammann, “Blazed synthetic phase-only holograms,” Optik 31, 95–104 (1970).

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Biebuyck, H. A.

H. A. Biebuyck, N. B. Larsen, E. Delamarche, B. Michel, “Lithography beyond light: microcontact printing with monolayer resits,” IBM J. Res. Dev. 41, 159–170 (1997).
[CrossRef]

J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–475 (1996).
[CrossRef]

A. Kumar, H. A. Biebuyck, G. M. Whitesides, “Patterning self-assembled monolayers: applications in material science,” Langmuir 10, 1498–1511 (1994).
[CrossRef]

Craighead, H. G.

A. G. Lopez, H. G. Craighead, “Wave-plate polarizing beam splitter based on a form-birefringent multiplayer grating,” Opt. Lett. 23, 1627–1629 (1998).
[CrossRef]

P. M. St. John, H. G. Craighead, “Microcontact printing and pattern transfer using trichlorosilanes on oxide substrates,” Appl. Phys. Lett. 68, 1022–1024 (1996).
[CrossRef]

Dammann, H.

H. Dammann, “Blazed synthetic phase-only holograms,” Optik 31, 95–104 (1970).

Delamarche, E.

H. A. Biebuyck, N. B. Larsen, E. Delamarche, B. Michel, “Lithography beyond light: microcontact printing with monolayer resits,” IBM J. Res. Dev. 41, 159–170 (1997).
[CrossRef]

Drabik, T.

Ferry, D.

T. K. Whidden, D. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology 7, 447–451 (1996).
[CrossRef]

Flanders, D. C.

D. C. Flanders, “Submicron periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Haidner, H.

Kim, E.

J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–475 (1996).
[CrossRef]

T. K. Whidden, D. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology 7, 447–451 (1996).
[CrossRef]

J. L. Wilbur, E. Kim, Y. Xia, G. M. Whitesides, “Lithographic molding: a convenient route to structures with sub-micrometer dimensions,” Adv. Mater. 7, 649–652 (1995).
[CrossRef]

Kipfer, P.

Kozicki, M. N.

T. K. Whidden, D. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology 7, 447–451 (1996).
[CrossRef]

Kumar, A.

J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–475 (1996).
[CrossRef]

T. K. Whidden, D. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology 7, 447–451 (1996).
[CrossRef]

A. Kumar, H. A. Biebuyck, G. M. Whitesides, “Patterning self-assembled monolayers: applications in material science,” Langmuir 10, 1498–1511 (1994).
[CrossRef]

A. Kumar, G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2004 (1993).
[CrossRef]

Larsen, N. B.

H. A. Biebuyck, N. B. Larsen, E. Delamarche, B. Michel, “Lithography beyond light: microcontact printing with monolayer resits,” IBM J. Res. Dev. 41, 159–170 (1997).
[CrossRef]

Lopez, A. G.

Michel, B.

H. A. Biebuyck, N. B. Larsen, E. Delamarche, B. Michel, “Lithography beyond light: microcontact printing with monolayer resits,” IBM J. Res. Dev. 41, 159–170 (1997).
[CrossRef]

Moharam, M. G.

Pommet, D. A.

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Smith, R. E.

St. John, P. M.

P. M. St. John, H. G. Craighead, “Microcontact printing and pattern transfer using trichlorosilanes on oxide substrates,” Appl. Phys. Lett. 68, 1022–1024 (1996).
[CrossRef]

Stork, W.

Streibl, N.

Swanson, G. J.

G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” (Lincoln Laboratory, MIT, Lexington, Mass., 1989).

Vawter, G. A.

Warren, M. E.

Wendt, J. R.

Whidden, T. K.

T. K. Whidden, D. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology 7, 447–451 (1996).
[CrossRef]

Whitesides, G. M.

Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998).
[CrossRef]

J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–475 (1996).
[CrossRef]

T. K. Whidden, D. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology 7, 447–451 (1996).
[CrossRef]

J. L. Wilbur, E. Kim, Y. Xia, G. M. Whitesides, “Lithographic molding: a convenient route to structures with sub-micrometer dimensions,” Adv. Mater. 7, 649–652 (1995).
[CrossRef]

A. Kumar, H. A. Biebuyck, G. M. Whitesides, “Patterning self-assembled monolayers: applications in material science,” Langmuir 10, 1498–1511 (1994).
[CrossRef]

A. Kumar, G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2004 (1993).
[CrossRef]

Wilbur, J.

T. K. Whidden, D. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology 7, 447–451 (1996).
[CrossRef]

Wilbur, J. L.

J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–475 (1996).
[CrossRef]

J. L. Wilbur, E. Kim, Y. Xia, G. M. Whitesides, “Lithographic molding: a convenient route to structures with sub-micrometer dimensions,” Adv. Mater. 7, 649–652 (1995).
[CrossRef]

Xia, Y.

Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998).
[CrossRef]

J. L. Wilbur, E. Kim, Y. Xia, G. M. Whitesides, “Lithographic molding: a convenient route to structures with sub-micrometer dimensions,” Adv. Mater. 7, 649–652 (1995).
[CrossRef]

Zhou, Z.

Adv. Mater. (1)

J. L. Wilbur, E. Kim, Y. Xia, G. M. Whitesides, “Lithographic molding: a convenient route to structures with sub-micrometer dimensions,” Adv. Mater. 7, 649–652 (1995).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

Y. Xia, G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. Engl. 37, 550–575 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

P. M. St. John, H. G. Craighead, “Microcontact printing and pattern transfer using trichlorosilanes on oxide substrates,” Appl. Phys. Lett. 68, 1022–1024 (1996).
[CrossRef]

A. Kumar, G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching,” Appl. Phys. Lett. 63, 2002–2004 (1993).
[CrossRef]

D. C. Flanders, “Submicron periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
[CrossRef]

IBM J. Res. Dev. (1)

H. A. Biebuyck, N. B. Larsen, E. Delamarche, B. Michel, “Lithography beyond light: microcontact printing with monolayer resits,” IBM J. Res. Dev. 41, 159–170 (1997).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

Langmuir (1)

A. Kumar, H. A. Biebuyck, G. M. Whitesides, “Patterning self-assembled monolayers: applications in material science,” Langmuir 10, 1498–1511 (1994).
[CrossRef]

Nanotechnology (2)

J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology 7, 452–475 (1996).
[CrossRef]

T. K. Whidden, D. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology 7, 447–451 (1996).
[CrossRef]

Opt. Lett. (3)

Optik (1)

H. Dammann, “Blazed synthetic phase-only holograms,” Optik 31, 95–104 (1970).

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other (4)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).

Subroutine DBCONF from International Mathematics and Statistics Library, Houston, Tex.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” (Lincoln Laboratory, MIT, Lexington, Mass., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic diagram of ODT after it has been patterned by microcontact printing on a gold-coated substrate.

Fig. 2
Fig. 2

Master stamp fabrication process. PECVD, plasma-enhanced chemical vapor deposition; PMMA, poly (methyl methacrylate); SCCM, cubic centimeters per minute at STP; MIBK:IAA, methyl isobutyl ketone:isopropyl alcohol.

Fig. 3
Fig. 3

Linear phase profile of blazed grating (beam deflector).

Fig. 4
Fig. 4

Schematic diagram showing different methods used to approximate a continuous linear phase profile.

Fig. 5
Fig. 5

Deep-etch process used to create the modulated index of refraction blazed grating. PECVD, plasma-enhanced chemical vapor deposition; DI, de-ionized; SCCM, cubic centimeters per minute at STP.

Fig. 6
Fig. 6

(a) Schematic diagram of the modulated index of refraction blazed grating. The one-dimensional surface-relief grating has a design wavelength of 1.55 µm. The grating material is a 1.75-µm-thick film of Si3N4. (b) Calculated diffraction efficiencies of blazed grating for the -1, 0, and +1 orders for TM polarization. AOI, angle of incidence.

Fig. 7
Fig. 7

SEMs of the blazed grating after the gold layer was etched.

Fig. 8
Fig. 8

SEMs of the blazed grating consisting of eight pillars with different widths over one period etched in a Si3N4 thin film.

Fig. 9
Fig. 9

Schematic diagram of the cross section of a one-dimensional surface-relief grating illuminated at normal incidence.

Fig. 10
Fig. 10

Schematic diagram of a quarter-wave plate consisting of a one-dimensional surface-relief grating etched into a low-stress silicon nitride layer. The design wavelength is 0.6328 µm.

Fig. 11
Fig. 11

(a) Calculated values of zero-order reflected and transmitted diffraction efficiencies for the TE polarization (solid curve) and TM polarization (dashed curve) as a function of angle of incidence (AOI). (b) Relative phase difference of the TE–TM components as a function of AOI.

Fig. 12
Fig. 12

Process for fabrication of quarter-wave plate by microcontact printing of a SAM. LPCVD, low-pressure chemical vapor deposition; DI, de-ioned; SCCM, cubic centimeters per minute at STP.

Fig. 13
Fig. 13

SEMs of the quarter-wave plates fabricated by different processes as explained in the text.

Fig. 14
Fig. 14

Test setup and normalized transmitted intensity obtained from the test setup as a function of the output polarizer angle.

Fig. 15
Fig. 15

Retardance of the wave plate as a function of the duty cycle of subwavelength grating.

Fig. 16
Fig. 16

(a) Schematic diagram of wave plate consisting of multilayer grating regions. The one-dimensional surface-relief grating design wavelength is 0.6328 µm. This design is less sensitive to linewidth manufacturing error. (b) Retardance of the wave plate is designed to be less sensitive to linewidth manufacturing error as function of the duty cycle of the grating.

Tables (2)

Tables Icon

Table 1 Diffraction Efficiency of Staircase Blazed Grating as a Function of the Number of Levels

Tables Icon

Table 2 Diffraction Efficiency for the Eight-Pillar Blazed Grating as a Function of Minimum Feature Sizea

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

nTE0=Fnr2+1-Fng21/2, nTM0=nr2ng2Fng2+1-Fnr21/2.

Metrics