Abstract

Electromagnetically induced transparency is observed in a mismatched-wavelength cascade system with a room-temperature rubidium vapor cell. A cw probe laser beam monitors the 5S 1/2 → 5P 3/2 transition while another cw laser couples the 5P 3/2 state to a higher excited state. The ratio of the observed Rabi frequencies for coupling to the 5P 3/2 → 8D 3/2,5/2 transitions agrees well with that predicted by use of the transition oscillator strengths. Optical switching is demonstrated with an 80-mW coupling laser beam modulated up to 1 MHz.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
    [CrossRef]
  2. J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
    [CrossRef]
  3. M. O. Scully, M. S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997), Chap. 7.
    [CrossRef]
  4. O. Kacharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992).
    [CrossRef]
  5. M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992).
    [CrossRef]
  6. P. Mandel, “Lasing without inversion: a useful concept?” Contemp. Phys. 34, 235–246 (1993).
    [CrossRef]
  7. D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
    [CrossRef] [PubMed]
  8. K. J. Boller, A. Imamoglu, S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef] [PubMed]
  9. J. E. Field, K. H. Hahn, S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
    [CrossRef] [PubMed]
  10. M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
    [CrossRef] [PubMed]
  11. J. Gea-Banacloche, Y. Li, S. J. M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
    [CrossRef] [PubMed]
  12. Y. Li, M. Xiao, “Electromagnetically induced transparency in a three-level lambda system in rubidium atoms,” Phys. Rev. A 51, R2703–2706 (1995).
    [CrossRef]
  13. Y. Li, M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51, 4959–4962 (1995).
    [CrossRef] [PubMed]
  14. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
    [CrossRef]
  15. S. Shepherd, D. J. Fulton, M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394–5399 (1996).
    [CrossRef] [PubMed]
  16. J. R. Boon, E. Zekou, D. McGloin, M. H. Dunn, “Comparison of wavelength dependence in cascade-, lambda-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
    [CrossRef]
  17. J. R. Boon, E. Zekou, D. J. Fulton, M. H. Dunn, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A. 57, 1323–1328 (1998).
    [CrossRef]
  18. A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
    [CrossRef] [PubMed]
  19. G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76, 2053–2056 (1996).
    [CrossRef] [PubMed]
  20. S. A. Hopkins, E. Usadi, H. X. Chen, A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium in three-level lambda systems,” Opt. Commun. 138, 185–192 (1997).
    [CrossRef]
  21. A. V. Durrant, H. X. Chen, S. A. Hopkins, J. A. Vaccaro, “Zeeman-coherence-induced transparency and gain inversion in laser-cooled rubidium,” Opt. Commun. 151, 136–146 (1998).
    [CrossRef]
  22. H. X. Chen, A. V. Durrant, J. P. Marangos, J. A. Vaccaro, “Observation of transient electromagnetically induced transparency in a rubidium lambda system,” Phys. Rev. A 58, 1545–1548 (1998).
    [CrossRef]
  23. T. van der Veldt, J. F. Roch, P. Grelu, P. Grangier, “Nonlinear absorption and dispersion of cold Rb-87 atoms,” Opt. Commun. 137, 420–426 (1997).
    [CrossRef]
  24. F. S. Cataliotti, C. Fort, T. W. Hansch, M. Inguscio, M. Prevedelli, “Electromagnetically induced transparency in cold free atoms: test of a sum rule for nonlinear optics,” Phys. Rev. A 56, 2221–2224 (1997).
    [CrossRef]
  25. C. Fort, F. S. Cataliotti, M. Prevedelli, M. Inguscio, “Temperature-selective trapping of atoms in a dark state by means of quantum interference,” Opt. Lett. 22, 1107–1109 (1997).
    [CrossRef] [PubMed]
  26. M. Mitsunaga, N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
    [CrossRef]
  27. C. Fort, F. S. Cataliotti, T. W. Hansch, M. Inguscio, M. Prevedelli, “Gain without inversion on the cesium D1 line,” Opt. Commun. 139, 31–34 (1997).
    [CrossRef]
  28. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
    [CrossRef]
  29. S. E. Harris, L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
    [CrossRef]
  30. B. S. Ham, S. M. Shahriar, P. R. Hemmer, “Electromagnetically induced transparency over spectral hole-burning temperature in a rare-earth-doped solid,” J. Opt. Soc. Am. B 16, 801–804 (1999).
    [CrossRef]
  31. Y. Li, M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21, 1064–1066 (1996).
    [CrossRef] [PubMed]
  32. J. C. Petch, C. H. Keitel, P. L. Knight, J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53, 543–561 (1996).
    [CrossRef] [PubMed]
  33. S. E. Harris, Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
    [CrossRef]
  34. H. Schmidt, R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
    [CrossRef]
  35. Log10[Rb] = -4560/T + 30.98 - 2.45 Log10T where T is in kelvins and [Rb], is in cm-3. See C. J. Smithells, Metals Reference Book (Butterworth, London, UK, 1962).
  36. D. R. Bates, A. Damgaard, “Calculation of the absolute strengths of spectral lines,” Phil. Trans. Roy. Soc. 242, 101–111 (1949).
    [CrossRef]
  37. W. A. van Wijngaarden, “Scalar and tensor polarizabilities of low lying S, D, F and G states in rubidium,” J. Quant. Spectrosc. Radiat. Trans. 57, 275–279 (1997).
    [CrossRef]
  38. C. E. Tanner, B. P. Masterson, C. E. Wieman, “Atomic beam collimation using a laser diode with a self-locking power-buildup cavity,” Opt. Lett. 13, 357–359 (1988).
    [CrossRef] [PubMed]

2000 (1)

H. Schmidt, R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
[CrossRef]

1999 (5)

M. Mitsunaga, N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

S. E. Harris, L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

B. S. Ham, S. M. Shahriar, P. R. Hemmer, “Electromagnetically induced transparency over spectral hole-burning temperature in a rare-earth-doped solid,” J. Opt. Soc. Am. B 16, 801–804 (1999).
[CrossRef]

J. R. Boon, E. Zekou, D. McGloin, M. H. Dunn, “Comparison of wavelength dependence in cascade-, lambda-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
[CrossRef]

1998 (5)

J. R. Boon, E. Zekou, D. J. Fulton, M. H. Dunn, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A. 57, 1323–1328 (1998).
[CrossRef]

A. V. Durrant, H. X. Chen, S. A. Hopkins, J. A. Vaccaro, “Zeeman-coherence-induced transparency and gain inversion in laser-cooled rubidium,” Opt. Commun. 151, 136–146 (1998).
[CrossRef]

H. X. Chen, A. V. Durrant, J. P. Marangos, J. A. Vaccaro, “Observation of transient electromagnetically induced transparency in a rubidium lambda system,” Phys. Rev. A 58, 1545–1548 (1998).
[CrossRef]

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[CrossRef]

S. E. Harris, Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

1997 (7)

S. A. Hopkins, E. Usadi, H. X. Chen, A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium in three-level lambda systems,” Opt. Commun. 138, 185–192 (1997).
[CrossRef]

W. A. van Wijngaarden, “Scalar and tensor polarizabilities of low lying S, D, F and G states in rubidium,” J. Quant. Spectrosc. Radiat. Trans. 57, 275–279 (1997).
[CrossRef]

C. Fort, F. S. Cataliotti, T. W. Hansch, M. Inguscio, M. Prevedelli, “Gain without inversion on the cesium D1 line,” Opt. Commun. 139, 31–34 (1997).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[CrossRef]

T. van der Veldt, J. F. Roch, P. Grelu, P. Grangier, “Nonlinear absorption and dispersion of cold Rb-87 atoms,” Opt. Commun. 137, 420–426 (1997).
[CrossRef]

F. S. Cataliotti, C. Fort, T. W. Hansch, M. Inguscio, M. Prevedelli, “Electromagnetically induced transparency in cold free atoms: test of a sum rule for nonlinear optics,” Phys. Rev. A 56, 2221–2224 (1997).
[CrossRef]

C. Fort, F. S. Cataliotti, M. Prevedelli, M. Inguscio, “Temperature-selective trapping of atoms in a dark state by means of quantum interference,” Opt. Lett. 22, 1107–1109 (1997).
[CrossRef] [PubMed]

1996 (4)

S. Shepherd, D. J. Fulton, M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394–5399 (1996).
[CrossRef] [PubMed]

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76, 2053–2056 (1996).
[CrossRef] [PubMed]

Y. Li, M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21, 1064–1066 (1996).
[CrossRef] [PubMed]

J. C. Petch, C. H. Keitel, P. L. Knight, J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53, 543–561 (1996).
[CrossRef] [PubMed]

1995 (7)

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Li, S. J. M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

Y. Li, M. Xiao, “Electromagnetically induced transparency in a three-level lambda system in rubidium atoms,” Phys. Rev. A 51, R2703–2706 (1995).
[CrossRef]

Y. Li, M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51, 4959–4962 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

1993 (1)

P. Mandel, “Lasing without inversion: a useful concept?” Contemp. Phys. 34, 235–246 (1993).
[CrossRef]

1992 (2)

O. Kacharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992).
[CrossRef]

M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992).
[CrossRef]

1991 (2)

K. J. Boller, A. Imamoglu, S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

J. E. Field, K. H. Hahn, S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

1988 (1)

1949 (1)

D. R. Bates, A. Damgaard, “Calculation of the absolute strengths of spectral lines,” Phil. Trans. Roy. Soc. 242, 101–111 (1949).
[CrossRef]

Bates, D. R.

D. R. Bates, A. Damgaard, “Calculation of the absolute strengths of spectral lines,” Phil. Trans. Roy. Soc. 242, 101–111 (1949).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

Boller, K. J.

K. J. Boller, A. Imamoglu, S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Boon, J. R.

J. R. Boon, E. Zekou, D. McGloin, M. H. Dunn, “Comparison of wavelength dependence in cascade-, lambda-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
[CrossRef]

J. R. Boon, E. Zekou, D. J. Fulton, M. H. Dunn, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A. 57, 1323–1328 (1998).
[CrossRef]

Cataliotti, F. S.

C. Fort, F. S. Cataliotti, T. W. Hansch, M. Inguscio, M. Prevedelli, “Gain without inversion on the cesium D1 line,” Opt. Commun. 139, 31–34 (1997).
[CrossRef]

F. S. Cataliotti, C. Fort, T. W. Hansch, M. Inguscio, M. Prevedelli, “Electromagnetically induced transparency in cold free atoms: test of a sum rule for nonlinear optics,” Phys. Rev. A 56, 2221–2224 (1997).
[CrossRef]

C. Fort, F. S. Cataliotti, M. Prevedelli, M. Inguscio, “Temperature-selective trapping of atoms in a dark state by means of quantum interference,” Opt. Lett. 22, 1107–1109 (1997).
[CrossRef] [PubMed]

Chen, H. X.

H. X. Chen, A. V. Durrant, J. P. Marangos, J. A. Vaccaro, “Observation of transient electromagnetically induced transparency in a rubidium lambda system,” Phys. Rev. A 58, 1545–1548 (1998).
[CrossRef]

A. V. Durrant, H. X. Chen, S. A. Hopkins, J. A. Vaccaro, “Zeeman-coherence-induced transparency and gain inversion in laser-cooled rubidium,” Opt. Commun. 151, 136–146 (1998).
[CrossRef]

S. A. Hopkins, E. Usadi, H. X. Chen, A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium in three-level lambda systems,” Opt. Commun. 138, 185–192 (1997).
[CrossRef]

Damgaard, A.

D. R. Bates, A. Damgaard, “Calculation of the absolute strengths of spectral lines,” Phil. Trans. Roy. Soc. 242, 101–111 (1949).
[CrossRef]

Dunn, M. H.

J. R. Boon, E. Zekou, D. McGloin, M. H. Dunn, “Comparison of wavelength dependence in cascade-, lambda-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
[CrossRef]

J. R. Boon, E. Zekou, D. J. Fulton, M. H. Dunn, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A. 57, 1323–1328 (1998).
[CrossRef]

S. Shepherd, D. J. Fulton, M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394–5399 (1996).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef] [PubMed]

Durrant, A. V.

H. X. Chen, A. V. Durrant, J. P. Marangos, J. A. Vaccaro, “Observation of transient electromagnetically induced transparency in a rubidium lambda system,” Phys. Rev. A 58, 1545–1548 (1998).
[CrossRef]

A. V. Durrant, H. X. Chen, S. A. Hopkins, J. A. Vaccaro, “Zeeman-coherence-induced transparency and gain inversion in laser-cooled rubidium,” Opt. Commun. 151, 136–146 (1998).
[CrossRef]

S. A. Hopkins, E. Usadi, H. X. Chen, A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium in three-level lambda systems,” Opt. Commun. 138, 185–192 (1997).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

Field, J. E.

J. E. Field, K. H. Hahn, S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

Fort, C.

C. Fort, F. S. Cataliotti, M. Prevedelli, M. Inguscio, “Temperature-selective trapping of atoms in a dark state by means of quantum interference,” Opt. Lett. 22, 1107–1109 (1997).
[CrossRef] [PubMed]

C. Fort, F. S. Cataliotti, T. W. Hansch, M. Inguscio, M. Prevedelli, “Gain without inversion on the cesium D1 line,” Opt. Commun. 139, 31–34 (1997).
[CrossRef]

F. S. Cataliotti, C. Fort, T. W. Hansch, M. Inguscio, M. Prevedelli, “Electromagnetically induced transparency in cold free atoms: test of a sum rule for nonlinear optics,” Phys. Rev. A 56, 2221–2224 (1997).
[CrossRef]

Fry, E. S.

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76, 2053–2056 (1996).
[CrossRef] [PubMed]

Fulton, D. J.

J. R. Boon, E. Zekou, D. J. Fulton, M. H. Dunn, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A. 57, 1323–1328 (1998).
[CrossRef]

S. Shepherd, D. J. Fulton, M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394–5399 (1996).
[CrossRef] [PubMed]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Li, S. J. M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

Grangier, P.

T. van der Veldt, J. F. Roch, P. Grelu, P. Grangier, “Nonlinear absorption and dispersion of cold Rb-87 atoms,” Opt. Commun. 137, 420–426 (1997).
[CrossRef]

Grelu, P.

T. van der Veldt, J. F. Roch, P. Grelu, P. Grangier, “Nonlinear absorption and dispersion of cold Rb-87 atoms,” Opt. Commun. 137, 420–426 (1997).
[CrossRef]

Hahn, K. H.

J. E. Field, K. H. Hahn, S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

Ham, B. S.

Hansch, T. W.

C. Fort, F. S. Cataliotti, T. W. Hansch, M. Inguscio, M. Prevedelli, “Gain without inversion on the cesium D1 line,” Opt. Commun. 139, 31–34 (1997).
[CrossRef]

F. S. Cataliotti, C. Fort, T. W. Hansch, M. Inguscio, M. Prevedelli, “Electromagnetically induced transparency in cold free atoms: test of a sum rule for nonlinear optics,” Phys. Rev. A 56, 2221–2224 (1997).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

S. E. Harris, L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

S. E. Harris, Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[CrossRef]

J. E. Field, K. H. Hahn, S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Hau, L. V.

S. E. Harris, L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

Hemmer, P. R.

Hollberg, L.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

Hopkins, S. A.

A. V. Durrant, H. X. Chen, S. A. Hopkins, J. A. Vaccaro, “Zeeman-coherence-induced transparency and gain inversion in laser-cooled rubidium,” Opt. Commun. 151, 136–146 (1998).
[CrossRef]

S. A. Hopkins, E. Usadi, H. X. Chen, A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium in three-level lambda systems,” Opt. Commun. 138, 185–192 (1997).
[CrossRef]

Imamoglu, A.

K. J. Boller, A. Imamoglu, S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Imoto, N.

M. Mitsunaga, N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
[CrossRef]

Inguscio, M.

C. Fort, F. S. Cataliotti, T. W. Hansch, M. Inguscio, M. Prevedelli, “Gain without inversion on the cesium D1 line,” Opt. Commun. 139, 31–34 (1997).
[CrossRef]

F. S. Cataliotti, C. Fort, T. W. Hansch, M. Inguscio, M. Prevedelli, “Electromagnetically induced transparency in cold free atoms: test of a sum rule for nonlinear optics,” Phys. Rev. A 56, 2221–2224 (1997).
[CrossRef]

C. Fort, F. S. Cataliotti, M. Prevedelli, M. Inguscio, “Temperature-selective trapping of atoms in a dark state by means of quantum interference,” Opt. Lett. 22, 1107–1109 (1997).
[CrossRef] [PubMed]

Jin, S.

M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Kacharovskaya, O.

O. Kacharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992).
[CrossRef]

Keitel, C. H.

J. C. Petch, C. H. Keitel, P. L. Knight, J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53, 543–561 (1996).
[CrossRef] [PubMed]

Knight, P. L.

J. C. Petch, C. H. Keitel, P. L. Knight, J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53, 543–561 (1996).
[CrossRef] [PubMed]

Li, Y.

Y. Li, M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21, 1064–1066 (1996).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Li, S. J. M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

Y. Li, M. Xiao, “Electromagnetically induced transparency in a three-level lambda system in rubidium atoms,” Phys. Rev. A 51, R2703–2706 (1995).
[CrossRef]

Y. Li, M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51, 4959–4962 (1995).
[CrossRef] [PubMed]

Lukin, M. D.

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76, 2053–2056 (1996).
[CrossRef] [PubMed]

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

Mandel, P.

P. Mandel, “Lasing without inversion: a useful concept?” Contemp. Phys. 34, 235–246 (1993).
[CrossRef]

Marangos, J. P.

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[CrossRef]

H. X. Chen, A. V. Durrant, J. P. Marangos, J. A. Vaccaro, “Observation of transient electromagnetically induced transparency in a rubidium lambda system,” Phys. Rev. A 58, 1545–1548 (1998).
[CrossRef]

J. C. Petch, C. H. Keitel, P. L. Knight, J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53, 543–561 (1996).
[CrossRef] [PubMed]

Masterson, B. P.

McGloin, D.

J. R. Boon, E. Zekou, D. McGloin, M. H. Dunn, “Comparison of wavelength dependence in cascade-, lambda-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
[CrossRef]

Mitsunaga, M.

M. Mitsunaga, N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
[CrossRef]

Moseley, R. R.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Nikonov, D. E.

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76, 2053–2056 (1996).
[CrossRef] [PubMed]

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

Padmabandu, G. G.

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76, 2053–2056 (1996).
[CrossRef] [PubMed]

Petch, J. C.

J. C. Petch, C. H. Keitel, P. L. Knight, J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53, 543–561 (1996).
[CrossRef] [PubMed]

Prevedelli, M.

C. Fort, F. S. Cataliotti, M. Prevedelli, M. Inguscio, “Temperature-selective trapping of atoms in a dark state by means of quantum interference,” Opt. Lett. 22, 1107–1109 (1997).
[CrossRef] [PubMed]

F. S. Cataliotti, C. Fort, T. W. Hansch, M. Inguscio, M. Prevedelli, “Electromagnetically induced transparency in cold free atoms: test of a sum rule for nonlinear optics,” Phys. Rev. A 56, 2221–2224 (1997).
[CrossRef]

C. Fort, F. S. Cataliotti, T. W. Hansch, M. Inguscio, M. Prevedelli, “Gain without inversion on the cesium D1 line,” Opt. Commun. 139, 31–34 (1997).
[CrossRef]

Ram, R. J.

H. Schmidt, R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
[CrossRef]

Robinson, H. G.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

Roch, J. F.

T. van der Veldt, J. F. Roch, P. Grelu, P. Grangier, “Nonlinear absorption and dispersion of cold Rb-87 atoms,” Opt. Commun. 137, 420–426 (1997).
[CrossRef]

Schmidt, H.

H. Schmidt, R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
[CrossRef]

Scully, M. O.

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76, 2053–2056 (1996).
[CrossRef] [PubMed]

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992).
[CrossRef]

M. O. Scully, M. S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997), Chap. 7.
[CrossRef]

Shahriar, S. M.

Shepherd, S.

S. Shepherd, D. J. Fulton, M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394–5399 (1996).
[CrossRef] [PubMed]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

Shubin, I. N.

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76, 2053–2056 (1996).
[CrossRef] [PubMed]

Sinclair, B. D.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef] [PubMed]

Smithells, C. J.

Log10[Rb] = -4560/T + 30.98 - 2.45 Log10T where T is in kelvins and [Rb], is in cm-3. See C. J. Smithells, Metals Reference Book (Butterworth, London, UK, 1962).

Tanner, C. E.

Usadi, E.

S. A. Hopkins, E. Usadi, H. X. Chen, A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium in three-level lambda systems,” Opt. Commun. 138, 185–192 (1997).
[CrossRef]

Vaccaro, J. A.

A. V. Durrant, H. X. Chen, S. A. Hopkins, J. A. Vaccaro, “Zeeman-coherence-induced transparency and gain inversion in laser-cooled rubidium,” Opt. Commun. 151, 136–146 (1998).
[CrossRef]

H. X. Chen, A. V. Durrant, J. P. Marangos, J. A. Vaccaro, “Observation of transient electromagnetically induced transparency in a rubidium lambda system,” Phys. Rev. A 58, 1545–1548 (1998).
[CrossRef]

van der Veldt, T.

T. van der Veldt, J. F. Roch, P. Grelu, P. Grangier, “Nonlinear absorption and dispersion of cold Rb-87 atoms,” Opt. Commun. 137, 420–426 (1997).
[CrossRef]

van Wijngaarden, W. A.

W. A. van Wijngaarden, “Scalar and tensor polarizabilities of low lying S, D, F and G states in rubidium,” J. Quant. Spectrosc. Radiat. Trans. 57, 275–279 (1997).
[CrossRef]

Velichansky, V. L.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

Welch, G. R.

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76, 2053–2056 (1996).
[CrossRef] [PubMed]

Wieman, C. E.

Xiao, M.

Y. Li, M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21, 1064–1066 (1996).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Y. Li, M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51, 4959–4962 (1995).
[CrossRef] [PubMed]

Y. Li, M. Xiao, “Electromagnetically induced transparency in a three-level lambda system in rubidium atoms,” Phys. Rev. A 51, R2703–2706 (1995).
[CrossRef]

Xiao, S. J. M.

J. Gea-Banacloche, Y. Li, S. J. M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

Yamamoto, Y.

S. E. Harris, Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

Zekou, E.

J. R. Boon, E. Zekou, D. McGloin, M. H. Dunn, “Comparison of wavelength dependence in cascade-, lambda-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
[CrossRef]

J. R. Boon, E. Zekou, D. J. Fulton, M. H. Dunn, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A. 57, 1323–1328 (1998).
[CrossRef]

Zibrov, A. S.

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

Zubairy, M. S.

M. O. Scully, M. S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997), Chap. 7.
[CrossRef]

Appl. Phys. Lett. (1)

H. Schmidt, R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76, 3173–3175 (2000).
[CrossRef]

Contemp. Phys. (1)

P. Mandel, “Lasing without inversion: a useful concept?” Contemp. Phys. 34, 235–246 (1993).
[CrossRef]

J. Mod. Opt. (1)

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Trans. (1)

W. A. van Wijngaarden, “Scalar and tensor polarizabilities of low lying S, D, F and G states in rubidium,” J. Quant. Spectrosc. Radiat. Trans. 57, 275–279 (1997).
[CrossRef]

Nature (London) (1)

L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999).
[CrossRef]

Opt. Commun. (5)

C. Fort, F. S. Cataliotti, T. W. Hansch, M. Inguscio, M. Prevedelli, “Gain without inversion on the cesium D1 line,” Opt. Commun. 139, 31–34 (1997).
[CrossRef]

T. van der Veldt, J. F. Roch, P. Grelu, P. Grangier, “Nonlinear absorption and dispersion of cold Rb-87 atoms,” Opt. Commun. 137, 420–426 (1997).
[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995).
[CrossRef]

S. A. Hopkins, E. Usadi, H. X. Chen, A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium in three-level lambda systems,” Opt. Commun. 138, 185–192 (1997).
[CrossRef]

A. V. Durrant, H. X. Chen, S. A. Hopkins, J. A. Vaccaro, “Zeeman-coherence-induced transparency and gain inversion in laser-cooled rubidium,” Opt. Commun. 151, 136–146 (1998).
[CrossRef]

Opt. Lett. (3)

Phil. Trans. Roy. Soc. (1)

D. R. Bates, A. Damgaard, “Calculation of the absolute strengths of spectral lines,” Phil. Trans. Roy. Soc. 242, 101–111 (1949).
[CrossRef]

Phys. Rep. (2)

O. Kacharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992).
[CrossRef]

M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992).
[CrossRef]

Phys. Rev. A (10)

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef] [PubMed]

H. X. Chen, A. V. Durrant, J. P. Marangos, J. A. Vaccaro, “Observation of transient electromagnetically induced transparency in a rubidium lambda system,” Phys. Rev. A 58, 1545–1548 (1998).
[CrossRef]

J. Gea-Banacloche, Y. Li, S. J. M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef] [PubMed]

Y. Li, M. Xiao, “Electromagnetically induced transparency in a three-level lambda system in rubidium atoms,” Phys. Rev. A 51, R2703–2706 (1995).
[CrossRef]

Y. Li, M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51, 4959–4962 (1995).
[CrossRef] [PubMed]

S. Shepherd, D. J. Fulton, M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394–5399 (1996).
[CrossRef] [PubMed]

J. R. Boon, E. Zekou, D. McGloin, M. H. Dunn, “Comparison of wavelength dependence in cascade-, lambda-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675–4684 (1999).
[CrossRef]

J. C. Petch, C. H. Keitel, P. L. Knight, J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53, 543–561 (1996).
[CrossRef] [PubMed]

M. Mitsunaga, N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
[CrossRef]

F. S. Cataliotti, C. Fort, T. W. Hansch, M. Inguscio, M. Prevedelli, “Electromagnetically induced transparency in cold free atoms: test of a sum rule for nonlinear optics,” Phys. Rev. A 56, 2221–2224 (1997).
[CrossRef]

Phys. Rev. A. (1)

J. R. Boon, E. Zekou, D. J. Fulton, M. H. Dunn, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A. 57, 1323–1328 (1998).
[CrossRef]

Phys. Rev. Lett. (7)

A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995).
[CrossRef] [PubMed]

G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76, 2053–2056 (1996).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

J. E. Field, K. H. Hahn, S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

S. E. Harris, L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
[CrossRef]

S. E. Harris, Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
[CrossRef]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[CrossRef]

Other (2)

Log10[Rb] = -4560/T + 30.98 - 2.45 Log10T where T is in kelvins and [Rb], is in cm-3. See C. J. Smithells, Metals Reference Book (Butterworth, London, UK, 1962).

M. O. Scully, M. S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997), Chap. 7.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Apparatus; see text for description.

Fig. 2
Fig. 2

Rubidium energy levels used in experiment. The cw diode probe laser monitors the 5S 1/2 → 5P 3/2 transition, whereas the cw dye laser coupled the 5P 3/2 state to one of the 10S 1/2, 8D 3/2, or 8D 5/2 excited states.

Fig. 3
Fig. 3

Probe laser transmission versus change of probe laser frequency. The dashed curve was taken by means of scanning the diode laser across the D 2 line of 85Rb and 87Rb without any coupling laser present. The solid curve was taken with 280 mW of dye laser light coupled to the 5P 3/2 → 8D 5/2 transition.

Fig. 4
Fig. 4

Effect of detuning the coupling laser on the EIT signal. The coupling laser frequency was detuned from the 5P 3/2 → 8D 5/2 transition of 85Rb. Detuning the coupling laser is as follows: (a) 0 GHz, (b) 0.13 GHz, (c) 0.26 GHz, (d) 0.40 GHz. The dye laser power of 280 mW was the same for all four scans.

Fig. 5
Fig. 5

Effect of coupling laser power on the EIT signal. The dye laser coupled to the 5P 3/2 → 8D 5/2 transition of 85Rb. The dye laser power varied from (a) 280 mW, (b) 80 mW, (c) 12 mW, and (d) 2 mW. All other experimental parameters were kept constant.

Fig. 6
Fig. 6

Effect of excited-state coupling on the EIT signal. The upper state of 85Rb coupled by the dye laser was (a) 8D 5/2, (b) 8D 3/2, (c) 10S 1/2. The dye laser power for all three scans was 280 mW.

Fig. 7
Fig. 7

Optical switching of the probe laser by the coupling laser. Solid curve, intensity of the coupling laser; dashed curve, intensity of the probe laser. The observed increase in the probe laser transmission that is due to the frequency-modulated coupling laser beam was (a) 25% at 10 kHz, (b) 17% at 100 kHz, and (c) 3% at 1 MHz. The signals are discussed in the text.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ω=erE/ħ,
Ω  KfI1/2,

Metrics