Abstract

A trace concentration of SO2 near 225.7 nm has been detected with a master-oscillator power-oscillator laser system for the first time, to our knowledge. A photoacoustic absorption spectrum of SO2 has been recorded on the 1 A 21 B 2 (π–π*) transition. Parametric dependence of the photoacoustic signal has been investigated. A detection limit (signal-to-noise ratio of 1) of 1.3 parts in 109 [1.3 ppbv (parts per billion by volume)] for SO2 have been determined at 1 atmospheric pressure inside a photoacoustic cell.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
    [CrossRef]
  2. K. P. Koch, W. Lahman, “Optoacoustic detection of sulfur dioxide below parts per billion level,” Appl. Phys. Lett. 32, 289–297 (1978).
    [CrossRef]
  3. P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of gaseous formic acid and acetic acid by pulsed ultraviolet photoacoustic spectroscopy,” Appl. Spectrosc. 42, 770–774 (1988).
    [CrossRef]
  4. M. Harris, G. N. Pearson, D. V. Willetts, K. Ridley, P. R. Tapster, B. Perret, “Pulsed indirect photoacoustic spectroscopy: application to remote detection of condensed phases,” Appl. Opt. 39, 1032–1041 (2000).
    [CrossRef]
  5. M. W. Sigrist, Air Monitoring by Spectroscopic Techniques, Chemical Analysis 127 (Wiley, New York, 1994), Chap. 3, pp. 163–238.
  6. P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
    [CrossRef]
  7. P. Hess, Resonant Photoacoustic Spectroscopy, Vol. 111 of Current Topics in Chemistry (Springer-Verlag, Berlin, 1983), pp. 1–32.
    [CrossRef]
  8. C. Brand, A. Winkler, P. Hess, A. Miklos, Z. Bozoki, J. Sneider, “Pulsed laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace-gas monitoring: results for C2H4,” Appl. Opt. 34, 3257–3266 (1995).
    [CrossRef] [PubMed]
  9. C. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a color center laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).
  10. P. Hess, Photoacoustic, Photothermal and Photochemical Processes in Gases, Vol. 46 of Current Topics in Physics (Springer-Verlag, Berlin, 1989), Chap. 5, pp. 85–123.
    [CrossRef]
  11. J. Davidson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
    [CrossRef]
  12. F. J. M. Harren, J. Reuss, E. J. Woltering, D. D. Bicanic, “Photoacoustic measurements of agriculturally interesting gases and detection of C2H4 below ppb level,” Appl. Spectrosc. 44, 1360–1368 (1990).
    [CrossRef]
  13. Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic, New York, 1977),Chap. 3, pp. 47–77.
  14. S. Bucher, T. Fink, A. Dax, Q. Yu, W. Urban, “Detection of trace gases by means of infrared laser photoacoustic technique,” Int. Agrophys. 8, 547–553 (1994).
  15. M. A. Gondal, “Remote monitoring of trace gases using CO2-laser photoacoustic system,” in Quantum Electronics and Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 244.
  16. M. A. Gondal, “Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants,” Appl. Opt. 36, 3195–3201 (1997).
    [CrossRef] [PubMed]
  17. M. A. Gondal, I. A. Bakhtiari, S. M. A. Durrani, “Spectroscopy of trace gases using a pulsed optoacoustic technique,” J. Anal. Atom. Spectrom. 13, 455–458 (1998).
    [CrossRef]
  18. M. A. Gondal, I. A. Bakhtiari, S. M. A. Durrani, “Pulsed IR photoacoustic spectroscopy of the ν3–ν2 combination band of NO2,” Asian J. Spectrosc. 1, 201–209 (1997).
  19. J. P. M. Trusler, Physical Acoustics and Metrology of Fluids (Hilger, Bristol, 1991), pp. 68–71.
  20. P. M. Morse, K. U. Ingrad, Theoretical Acoustics (Princeton U. Press, Princeton, N. J., 1968), pp. 490–492.
  21. M. Fiedler, P. Hess, “Frequency domain analysis of acoustic resonances excited with single laser pulses,” in Photoacoustic and Photothermal Phenomena, J. C. Maclachlan Spicer, L. C. Aamodt, B. S. H. Royce, eds., Vol. 62 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, Heidelberg, 1990), pp. 334–346.
  22. A. Miklos, C. Brand, A. Winkler, P. Hess, “Windowless resonant acoustic chamber for laser photoacoustic applications,” Appl. Phys. B 48, 213–218 (1989).
    [CrossRef]
  23. A. Miklos, C. Brand, A. Winkler, P. Hess, “Effective noise reduction on pulsed laser excitation of modes in high-Q photoacoustic resonator,” J. Phys. (Paris) 4, C7–781–C7–784 (1994).
  24. D. J. Brassington, R. C. Felton, B. W. Jolliffe, B. R. Marx, J. T. Moncrieff, W. R. C. Rowley, P. T. Woods, “Errors in spectroscopic measurements of SO2 due to nonexponential absorption of laser radiation, with application to the remote monitoring of atmospheric pollutants,” Appl. Opt. 23, 469–475 (1984).
    [CrossRef]
  25. R. W. B. Pearse, A. G. Gordon, The Identification of Molecular Spectra, 4th ed. (Wiley, New York, 1976), p. 298.
  26. J. C. D. Brand, K. Srikameswaram, “The π*–π(2350-A°) band system of sulphur dioxide,” Chem. Phys. Lett. 15, 130–132 (1972).
    [CrossRef]
  27. C. K. Williamson, R. L. Pastel, R. C. Sausa, “Detection of ambient NO by laser-induced photoacoustic spectrometry using A2Σ+–X2∏ (0,0) transitions near 226 nm,” Appl. Spectrosc. 50, 205–210 (1996).
    [CrossRef]

2000

1998

M. A. Gondal, I. A. Bakhtiari, S. M. A. Durrani, “Spectroscopy of trace gases using a pulsed optoacoustic technique,” J. Anal. Atom. Spectrom. 13, 455–458 (1998).
[CrossRef]

1997

M. A. Gondal, I. A. Bakhtiari, S. M. A. Durrani, “Pulsed IR photoacoustic spectroscopy of the ν3–ν2 combination band of NO2,” Asian J. Spectrosc. 1, 201–209 (1997).

M. A. Gondal, “Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants,” Appl. Opt. 36, 3195–3201 (1997).
[CrossRef] [PubMed]

1996

1995

C. Brand, A. Winkler, P. Hess, A. Miklos, Z. Bozoki, J. Sneider, “Pulsed laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace-gas monitoring: results for C2H4,” Appl. Opt. 34, 3257–3266 (1995).
[CrossRef] [PubMed]

C. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a color center laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).

1994

A. Miklos, C. Brand, A. Winkler, P. Hess, “Effective noise reduction on pulsed laser excitation of modes in high-Q photoacoustic resonator,” J. Phys. (Paris) 4, C7–781–C7–784 (1994).

S. Bucher, T. Fink, A. Dax, Q. Yu, W. Urban, “Detection of trace gases by means of infrared laser photoacoustic technique,” Int. Agrophys. 8, 547–553 (1994).

1990

J. Davidson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

F. J. M. Harren, J. Reuss, E. J. Woltering, D. D. Bicanic, “Photoacoustic measurements of agriculturally interesting gases and detection of C2H4 below ppb level,” Appl. Spectrosc. 44, 1360–1368 (1990).
[CrossRef]

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

1989

A. Miklos, C. Brand, A. Winkler, P. Hess, “Windowless resonant acoustic chamber for laser photoacoustic applications,” Appl. Phys. B 48, 213–218 (1989).
[CrossRef]

1988

1987

P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

1984

1978

K. P. Koch, W. Lahman, “Optoacoustic detection of sulfur dioxide below parts per billion level,” Appl. Phys. Lett. 32, 289–297 (1978).
[CrossRef]

1972

J. C. D. Brand, K. Srikameswaram, “The π*–π(2350-A°) band system of sulphur dioxide,” Chem. Phys. Lett. 15, 130–132 (1972).
[CrossRef]

Atkinson, G. H.

P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of gaseous formic acid and acetic acid by pulsed ultraviolet photoacoustic spectroscopy,” Appl. Spectrosc. 42, 770–774 (1988).
[CrossRef]

P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

Bakhtiari, I. A.

M. A. Gondal, I. A. Bakhtiari, S. M. A. Durrani, “Spectroscopy of trace gases using a pulsed optoacoustic technique,” J. Anal. Atom. Spectrom. 13, 455–458 (1998).
[CrossRef]

M. A. Gondal, I. A. Bakhtiari, S. M. A. Durrani, “Pulsed IR photoacoustic spectroscopy of the ν3–ν2 combination band of NO2,” Asian J. Spectrosc. 1, 201–209 (1997).

Bicanic, D. D.

Bozoki, Z.

Brand, C.

C. Brand, A. Winkler, P. Hess, A. Miklos, Z. Bozoki, J. Sneider, “Pulsed laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace-gas monitoring: results for C2H4,” Appl. Opt. 34, 3257–3266 (1995).
[CrossRef] [PubMed]

A. Miklos, C. Brand, A. Winkler, P. Hess, “Effective noise reduction on pulsed laser excitation of modes in high-Q photoacoustic resonator,” J. Phys. (Paris) 4, C7–781–C7–784 (1994).

A. Miklos, C. Brand, A. Winkler, P. Hess, “Windowless resonant acoustic chamber for laser photoacoustic applications,” Appl. Phys. B 48, 213–218 (1989).
[CrossRef]

Brand, J. C. D.

J. C. D. Brand, K. Srikameswaram, “The π*–π(2350-A°) band system of sulphur dioxide,” Chem. Phys. Lett. 15, 130–132 (1972).
[CrossRef]

Brassington, D. J.

Bucher, S.

S. Bucher, T. Fink, A. Dax, Q. Yu, W. Urban, “Detection of trace gases by means of infrared laser photoacoustic technique,” Int. Agrophys. 8, 547–553 (1994).

Cvijin, P. V.

P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of gaseous formic acid and acetic acid by pulsed ultraviolet photoacoustic spectroscopy,” Appl. Spectrosc. 42, 770–774 (1988).
[CrossRef]

P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

Davidson, J.

J. Davidson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

Dax, A.

S. Bucher, T. Fink, A. Dax, Q. Yu, W. Urban, “Detection of trace gases by means of infrared laser photoacoustic technique,” Int. Agrophys. 8, 547–553 (1994).

Demtroder, W.

C. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a color center laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).

Durrani, S. M. A.

M. A. Gondal, I. A. Bakhtiari, S. M. A. Durrani, “Spectroscopy of trace gases using a pulsed optoacoustic technique,” J. Anal. Atom. Spectrom. 13, 455–458 (1998).
[CrossRef]

M. A. Gondal, I. A. Bakhtiari, S. M. A. Durrani, “Pulsed IR photoacoustic spectroscopy of the ν3–ν2 combination band of NO2,” Asian J. Spectrosc. 1, 201–209 (1997).

Felton, R. C.

Fiedler, M.

M. Fiedler, P. Hess, “Frequency domain analysis of acoustic resonances excited with single laser pulses,” in Photoacoustic and Photothermal Phenomena, J. C. Maclachlan Spicer, L. C. Aamodt, B. S. H. Royce, eds., Vol. 62 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, Heidelberg, 1990), pp. 334–346.

Fink, T.

S. Bucher, T. Fink, A. Dax, Q. Yu, W. Urban, “Detection of trace gases by means of infrared laser photoacoustic technique,” Int. Agrophys. 8, 547–553 (1994).

Gilmore, D. A.

P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of gaseous formic acid and acetic acid by pulsed ultraviolet photoacoustic spectroscopy,” Appl. Spectrosc. 42, 770–774 (1988).
[CrossRef]

P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

Gondal, M. A.

M. A. Gondal, I. A. Bakhtiari, S. M. A. Durrani, “Spectroscopy of trace gases using a pulsed optoacoustic technique,” J. Anal. Atom. Spectrom. 13, 455–458 (1998).
[CrossRef]

M. A. Gondal, I. A. Bakhtiari, S. M. A. Durrani, “Pulsed IR photoacoustic spectroscopy of the ν3–ν2 combination band of NO2,” Asian J. Spectrosc. 1, 201–209 (1997).

M. A. Gondal, “Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants,” Appl. Opt. 36, 3195–3201 (1997).
[CrossRef] [PubMed]

M. A. Gondal, “Remote monitoring of trace gases using CO2-laser photoacoustic system,” in Quantum Electronics and Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 244.

Gordon, A. G.

R. W. B. Pearse, A. G. Gordon, The Identification of Molecular Spectra, 4th ed. (Wiley, New York, 1976), p. 298.

Gutow, J. H.

J. Davidson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

Harren, F. J. M.

Harris, M.

Hess, P.

C. Brand, A. Winkler, P. Hess, A. Miklos, Z. Bozoki, J. Sneider, “Pulsed laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace-gas monitoring: results for C2H4,” Appl. Opt. 34, 3257–3266 (1995).
[CrossRef] [PubMed]

A. Miklos, C. Brand, A. Winkler, P. Hess, “Effective noise reduction on pulsed laser excitation of modes in high-Q photoacoustic resonator,” J. Phys. (Paris) 4, C7–781–C7–784 (1994).

A. Miklos, C. Brand, A. Winkler, P. Hess, “Windowless resonant acoustic chamber for laser photoacoustic applications,” Appl. Phys. B 48, 213–218 (1989).
[CrossRef]

P. Hess, Resonant Photoacoustic Spectroscopy, Vol. 111 of Current Topics in Chemistry (Springer-Verlag, Berlin, 1983), pp. 1–32.
[CrossRef]

M. Fiedler, P. Hess, “Frequency domain analysis of acoustic resonances excited with single laser pulses,” in Photoacoustic and Photothermal Phenomena, J. C. Maclachlan Spicer, L. C. Aamodt, B. S. H. Royce, eds., Vol. 62 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, Heidelberg, 1990), pp. 334–346.

P. Hess, Photoacoustic, Photothermal and Photochemical Processes in Gases, Vol. 46 of Current Topics in Physics (Springer-Verlag, Berlin, 1989), Chap. 5, pp. 85–123.
[CrossRef]

Horenberger, C.

C. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a color center laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).

Ingrad, K. U.

P. M. Morse, K. U. Ingrad, Theoretical Acoustics (Princeton U. Press, Princeton, N. J., 1968), pp. 490–492.

Jolliffe, B. W.

Koch, K. P.

K. P. Koch, W. Lahman, “Optoacoustic detection of sulfur dioxide below parts per billion level,” Appl. Phys. Lett. 32, 289–297 (1978).
[CrossRef]

Konig, M.

C. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a color center laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).

Lahman, W.

K. P. Koch, W. Lahman, “Optoacoustic detection of sulfur dioxide below parts per billion level,” Appl. Phys. Lett. 32, 289–297 (1978).
[CrossRef]

Marx, B. R.

Meyer, P. L.

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Miklos, A.

C. Brand, A. Winkler, P. Hess, A. Miklos, Z. Bozoki, J. Sneider, “Pulsed laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace-gas monitoring: results for C2H4,” Appl. Opt. 34, 3257–3266 (1995).
[CrossRef] [PubMed]

A. Miklos, C. Brand, A. Winkler, P. Hess, “Effective noise reduction on pulsed laser excitation of modes in high-Q photoacoustic resonator,” J. Phys. (Paris) 4, C7–781–C7–784 (1994).

A. Miklos, C. Brand, A. Winkler, P. Hess, “Windowless resonant acoustic chamber for laser photoacoustic applications,” Appl. Phys. B 48, 213–218 (1989).
[CrossRef]

Moncrieff, J. T.

Morse, P. M.

P. M. Morse, K. U. Ingrad, Theoretical Acoustics (Princeton U. Press, Princeton, N. J., 1968), pp. 490–492.

Pao, Y. H.

Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic, New York, 1977),Chap. 3, pp. 47–77.

Pastel, R. L.

Pearse, R. W. B.

R. W. B. Pearse, A. G. Gordon, The Identification of Molecular Spectra, 4th ed. (Wiley, New York, 1976), p. 298.

Pearson, G. N.

Perret, B.

Rai, S. B.

C. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a color center laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).

Reuss, J.

Ridley, K.

Rowley, W. R. C.

Sausa, R. C.

Sigrist, M. W.

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

M. W. Sigrist, Air Monitoring by Spectroscopic Techniques, Chemical Analysis 127 (Wiley, New York, 1994), Chap. 3, pp. 163–238.

Sneider, J.

Srikameswaram, K.

J. C. D. Brand, K. Srikameswaram, “The π*–π(2350-A°) band system of sulphur dioxide,” Chem. Phys. Lett. 15, 130–132 (1972).
[CrossRef]

Tapster, P. R.

Trusler, J. P. M.

J. P. M. Trusler, Physical Acoustics and Metrology of Fluids (Hilger, Bristol, 1991), pp. 68–71.

Urban, W.

S. Bucher, T. Fink, A. Dax, Q. Yu, W. Urban, “Detection of trace gases by means of infrared laser photoacoustic technique,” Int. Agrophys. 8, 547–553 (1994).

Willetts, D. V.

Williamson, C. K.

Winkler, A.

C. Brand, A. Winkler, P. Hess, A. Miklos, Z. Bozoki, J. Sneider, “Pulsed laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace-gas monitoring: results for C2H4,” Appl. Opt. 34, 3257–3266 (1995).
[CrossRef] [PubMed]

A. Miklos, C. Brand, A. Winkler, P. Hess, “Effective noise reduction on pulsed laser excitation of modes in high-Q photoacoustic resonator,” J. Phys. (Paris) 4, C7–781–C7–784 (1994).

A. Miklos, C. Brand, A. Winkler, P. Hess, “Windowless resonant acoustic chamber for laser photoacoustic applications,” Appl. Phys. B 48, 213–218 (1989).
[CrossRef]

Woltering, E. J.

Woods, P. T.

Yu, Q.

S. Bucher, T. Fink, A. Dax, Q. Yu, W. Urban, “Detection of trace gases by means of infrared laser photoacoustic technique,” Int. Agrophys. 8, 547–553 (1994).

Zare, R. N.

J. Davidson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

Anal. Chem.

P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. Miklos, C. Brand, A. Winkler, P. Hess, “Windowless resonant acoustic chamber for laser photoacoustic applications,” Appl. Phys. B 48, 213–218 (1989).
[CrossRef]

Appl. Phys. Lett.

K. P. Koch, W. Lahman, “Optoacoustic detection of sulfur dioxide below parts per billion level,” Appl. Phys. Lett. 32, 289–297 (1978).
[CrossRef]

Appl. Spectrosc.

Asian J. Spectrosc.

M. A. Gondal, I. A. Bakhtiari, S. M. A. Durrani, “Pulsed IR photoacoustic spectroscopy of the ν3–ν2 combination band of NO2,” Asian J. Spectrosc. 1, 201–209 (1997).

Chem. Phys. Lett.

C. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a color center laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).

J. C. D. Brand, K. Srikameswaram, “The π*–π(2350-A°) band system of sulphur dioxide,” Chem. Phys. Lett. 15, 130–132 (1972).
[CrossRef]

Int. Agrophys.

S. Bucher, T. Fink, A. Dax, Q. Yu, W. Urban, “Detection of trace gases by means of infrared laser photoacoustic technique,” Int. Agrophys. 8, 547–553 (1994).

J. Anal. Atom. Spectrom.

M. A. Gondal, I. A. Bakhtiari, S. M. A. Durrani, “Spectroscopy of trace gases using a pulsed optoacoustic technique,” J. Anal. Atom. Spectrom. 13, 455–458 (1998).
[CrossRef]

J. Phys. (Paris)

A. Miklos, C. Brand, A. Winkler, P. Hess, “Effective noise reduction on pulsed laser excitation of modes in high-Q photoacoustic resonator,” J. Phys. (Paris) 4, C7–781–C7–784 (1994).

J. Phys. Chem.

J. Davidson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

Rev. Sci. Instrum.

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Other

P. Hess, Resonant Photoacoustic Spectroscopy, Vol. 111 of Current Topics in Chemistry (Springer-Verlag, Berlin, 1983), pp. 1–32.
[CrossRef]

P. Hess, Photoacoustic, Photothermal and Photochemical Processes in Gases, Vol. 46 of Current Topics in Physics (Springer-Verlag, Berlin, 1989), Chap. 5, pp. 85–123.
[CrossRef]

M. W. Sigrist, Air Monitoring by Spectroscopic Techniques, Chemical Analysis 127 (Wiley, New York, 1994), Chap. 3, pp. 163–238.

M. A. Gondal, “Remote monitoring of trace gases using CO2-laser photoacoustic system,” in Quantum Electronics and Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 244.

Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic, New York, 1977),Chap. 3, pp. 47–77.

J. P. M. Trusler, Physical Acoustics and Metrology of Fluids (Hilger, Bristol, 1991), pp. 68–71.

P. M. Morse, K. U. Ingrad, Theoretical Acoustics (Princeton U. Press, Princeton, N. J., 1968), pp. 490–492.

M. Fiedler, P. Hess, “Frequency domain analysis of acoustic resonances excited with single laser pulses,” in Photoacoustic and Photothermal Phenomena, J. C. Maclachlan Spicer, L. C. Aamodt, B. S. H. Royce, eds., Vol. 62 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, Heidelberg, 1990), pp. 334–346.

R. W. B. Pearse, A. G. Gordon, The Identification of Molecular Spectra, 4th ed. (Wiley, New York, 1976), p. 298.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the pulsed MOPO laser resonant photoacoustic (PA) system for detection of sulfur dioxide.

Fig. 2
Fig. 2

Photoacoustic spectrum of SO2 excited with a tunable MOPO laser in the 225–231-nm region. Here 47 ppmv of SO2 was buffered in 1000 mbar of N2.

Fig. 3
Fig. 3

Calculated Fourier spectrum showing various resonant modes of our photoacoustic cell. Here the first radial mode (100) occurs around 4200 Hz theoretically.

Fig. 4
Fig. 4

Fourier spectra of the photoacoustic signal recorded for 47-ppbv of sulfur dioxide buffered in 1000 mbar of N2. The first radial mode (100) is registered at 4286 Hz.

Fig. 5
Fig. 5

Typical Fourier spectrum of SO2 recorded at an excitation wavelength of 300 nm. Here 47 ppbv of SO2 was buffered in 1000 mbar of N2.

Fig. 6
Fig. 6

Photoacoustic Fourier spectra recorded with pure nitrogen as a background gas.

Fig. 7
Fig. 7

Calibration curve for SO2. Here the photoacoustic signal recorded at a different concentration in ppbv is plotted. A linear dependence of the photoacoustic signal has been found over a broad range of concentration (ppbv-ppm) of SO2.

Fig. 8
Fig. 8

Photoacoustic signal dependence on the laser energy recorded at 225.7 nm. Here 47 ppmv of SO2 was buffered in 1000 mbar.

Tables (1)

Tables Icon

Table 1 Wavelength and Relative Intensity of Observed Transitions

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t2pr, t-v22pr, t=γ-1tHr, t,
pr, t=ΣjAjtpjrexpiωjt.
SPA=RmicN0σ1P/CvA+kM,

Metrics