Abstract

We have constructed a novel ring cavity for a double-clad thulium-doped fiber laser, by placing the fiber’s 45° angle-polished output end before the input end and relaunching the pump and the laser power into the fiber. This design can reduce reabsorption by using short fibers without loss of pump efficiency. The dependence of the laser’s performance on the fiber’s length and the output coupler’s reflectivity is investigated experimentally and theoretically. With an 80-cm-long fiber, 2.7-W single-mode continuous-wave output is generated for 11.5 W of launched pump power.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115W Tm:YAG diode pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
    [CrossRef]
  2. C. P. Wyss, W. Luthu, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov, “A diode-pumped 1.4-W Tm3+: GdVO4 microchip laser at 1.9 µm,” IEEE J. Quantum Electron. 34, 2380–2382 (1998).
    [CrossRef]
  3. L. Zenteno, “High-power double-clad fiber lasers,” IEEE J. Quantum Electron. 11, 1435–1446 (1993).
  4. R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, D. C. Hanna, “Efficient cladding-pumping Tm-doped silica fibre laser with high power singlemode output at 2 µm,” Electron. Lett. 36, 711–712 (2000).
    [CrossRef]
  5. T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28, 2692–2697 (2000).
    [CrossRef]
  6. I. Kelson, A. Hardy, “Optimization of strongly pumped fiber lasers,” J. Lightwave Technol. 17, 891–897 (1999).
    [CrossRef]
  7. S. D. Jackson, T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23, 1462–1464 (1998).
    [CrossRef]
  8. S. D. Jackson, T. A. King, “Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers,” J. Opt. Soc. Am. B 16, 2178–2188 (1999).
    [CrossRef]
  9. X. Zou, H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
    [CrossRef]
  10. G. Rustad, K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1654–1656 (1996).
  11. R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1995).
    [CrossRef]
  12. M. J. F. Digonnet, “Theory of superfluorescent fiber lasers,” J. Lightwave Technol. LT-4, 1631–1639 (1986).
    [CrossRef]
  13. S. D. Jackson, T. A. King, “Theoretical model of Tm-doped silica fiber laser,” J. Lightwave Technol. 17, 948–956 (1999).
    [CrossRef]

2000

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, D. C. Hanna, “Efficient cladding-pumping Tm-doped silica fibre laser with high power singlemode output at 2 µm,” Electron. Lett. 36, 711–712 (2000).
[CrossRef]

T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28, 2692–2697 (2000).
[CrossRef]

1999

1998

C. P. Wyss, W. Luthu, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov, “A diode-pumped 1.4-W Tm3+: GdVO4 microchip laser at 1.9 µm,” IEEE J. Quantum Electron. 34, 2380–2382 (1998).
[CrossRef]

S. D. Jackson, T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23, 1462–1464 (1998).
[CrossRef]

1997

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115W Tm:YAG diode pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

1996

X. Zou, H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
[CrossRef]

G. Rustad, K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1654–1656 (1996).

1995

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1995).
[CrossRef]

1993

L. Zenteno, “High-power double-clad fiber lasers,” IEEE J. Quantum Electron. 11, 1435–1446 (1993).

1986

M. J. F. Digonnet, “Theory of superfluorescent fiber lasers,” J. Lightwave Technol. LT-4, 1631–1639 (1986).
[CrossRef]

Beach, R. J.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115W Tm:YAG diode pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1995).
[CrossRef]

Clarkson, W. A.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, D. C. Hanna, “Efficient cladding-pumping Tm-doped silica fibre laser with high power singlemode output at 2 µm,” Electron. Lett. 36, 711–712 (2000).
[CrossRef]

Digonnet, M. J. F.

M. J. F. Digonnet, “Theory of superfluorescent fiber lasers,” J. Lightwave Technol. LT-4, 1631–1639 (1986).
[CrossRef]

Emanuel, M. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115W Tm:YAG diode pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Fan, T. Y.

T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28, 2692–2697 (2000).
[CrossRef]

Grudinin, A. B.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, D. C. Hanna, “Efficient cladding-pumping Tm-doped silica fibre laser with high power singlemode output at 2 µm,” Electron. Lett. 36, 711–712 (2000).
[CrossRef]

Hanna, D. C.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, D. C. Hanna, “Efficient cladding-pumping Tm-doped silica fibre laser with high power singlemode output at 2 µm,” Electron. Lett. 36, 711–712 (2000).
[CrossRef]

Hardy, A.

Hayward, R. A.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, D. C. Hanna, “Efficient cladding-pumping Tm-doped silica fibre laser with high power singlemode output at 2 µm,” Electron. Lett. 36, 711–712 (2000).
[CrossRef]

Honea, E. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115W Tm:YAG diode pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Jackson, S. D.

Kelson, I.

King, T. A.

Luthu, W.

C. P. Wyss, W. Luthu, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov, “A diode-pumped 1.4-W Tm3+: GdVO4 microchip laser at 1.9 µm,” IEEE J. Quantum Electron. 34, 2380–2382 (1998).
[CrossRef]

Mitchell, S. C.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115W Tm:YAG diode pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Nilsson, J.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, D. C. Hanna, “Efficient cladding-pumping Tm-doped silica fibre laser with high power singlemode output at 2 µm,” Electron. Lett. 36, 711–712 (2000).
[CrossRef]

Payne, S. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115W Tm:YAG diode pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Rustad, G.

G. Rustad, K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1654–1656 (1996).

Shcherbakov, I. A.

C. P. Wyss, W. Luthu, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov, “A diode-pumped 1.4-W Tm3+: GdVO4 microchip laser at 1.9 µm,” IEEE J. Quantum Electron. 34, 2380–2382 (1998).
[CrossRef]

Skidmore, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115W Tm:YAG diode pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Speth, J. A.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115W Tm:YAG diode pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Stenersen, K.

G. Rustad, K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1654–1656 (1996).

Studenikin, P. A.

C. P. Wyss, W. Luthu, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov, “A diode-pumped 1.4-W Tm3+: GdVO4 microchip laser at 1.9 µm,” IEEE J. Quantum Electron. 34, 2380–2382 (1998).
[CrossRef]

Sutton, S. B.

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115W Tm:YAG diode pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

Toratani, H.

X. Zou, H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
[CrossRef]

Turner, P. W.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, D. C. Hanna, “Efficient cladding-pumping Tm-doped silica fibre laser with high power singlemode output at 2 µm,” Electron. Lett. 36, 711–712 (2000).
[CrossRef]

Vlasov, V. I.

C. P. Wyss, W. Luthu, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov, “A diode-pumped 1.4-W Tm3+: GdVO4 microchip laser at 1.9 µm,” IEEE J. Quantum Electron. 34, 2380–2382 (1998).
[CrossRef]

Weber, H. P.

C. P. Wyss, W. Luthu, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov, “A diode-pumped 1.4-W Tm3+: GdVO4 microchip laser at 1.9 µm,” IEEE J. Quantum Electron. 34, 2380–2382 (1998).
[CrossRef]

Wyss, C. P.

C. P. Wyss, W. Luthu, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov, “A diode-pumped 1.4-W Tm3+: GdVO4 microchip laser at 1.9 µm,” IEEE J. Quantum Electron. 34, 2380–2382 (1998).
[CrossRef]

Zagumennyi, A. I.

C. P. Wyss, W. Luthu, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov, “A diode-pumped 1.4-W Tm3+: GdVO4 microchip laser at 1.9 µm,” IEEE J. Quantum Electron. 34, 2380–2382 (1998).
[CrossRef]

Zavartsev, Y. D.

C. P. Wyss, W. Luthu, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov, “A diode-pumped 1.4-W Tm3+: GdVO4 microchip laser at 1.9 µm,” IEEE J. Quantum Electron. 34, 2380–2382 (1998).
[CrossRef]

Zenteno, L.

L. Zenteno, “High-power double-clad fiber lasers,” IEEE J. Quantum Electron. 11, 1435–1446 (1993).

Zou, X.

X. Zou, H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
[CrossRef]

Electron. Lett.

R. A. Hayward, W. A. Clarkson, P. W. Turner, J. Nilsson, A. B. Grudinin, D. C. Hanna, “Efficient cladding-pumping Tm-doped silica fibre laser with high power singlemode output at 2 µm,” Electron. Lett. 36, 711–712 (2000).
[CrossRef]

IEEE J. Quantum Electron.

T. Y. Fan, “Optimizing the efficiency and stored energy in quasi-three-level lasers,” IEEE J. Quantum Electron. 28, 2692–2697 (2000).
[CrossRef]

E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. A. Payne, “115W Tm:YAG diode pumped solid-state laser,” IEEE J. Quantum Electron. 33, 1592–1600 (1997).
[CrossRef]

C. P. Wyss, W. Luthu, H. P. Weber, V. I. Vlasov, Y. D. Zavartsev, P. A. Studenikin, A. I. Zagumennyi, I. A. Shcherbakov, “A diode-pumped 1.4-W Tm3+: GdVO4 microchip laser at 1.9 µm,” IEEE J. Quantum Electron. 34, 2380–2382 (1998).
[CrossRef]

L. Zenteno, “High-power double-clad fiber lasers,” IEEE J. Quantum Electron. 11, 1435–1446 (1993).

G. Rustad, K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1654–1656 (1996).

J. Lightwave Technol.

J. Non-Cryst. Solids

X. Zou, H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1995).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the ring cavity double-clad fiber laser. The output end of the fiber is polished at an angle of 45° to the fiber axis. LD, laser-diode bar; L1–L3, lenses; F, filter; PD, powermeter; B, focus of the pump beam; A, position of fiber output end.

Fig. 2
Fig. 2

Schematic view of the four lowest-energy levels in Tm3+ ions with the energy transfer mechanisms considered in this paper.

Fig. 3
Fig. 3

Population density of the N1(3 H 6), N2(3 H 4), and N4(3 F 4) energy levels as a function of (a) the laser intensity where the pump intensity is 0.4 GW/m3 and (b) the pump intensity where the laser intensity is 0.005 GW/m3.

Fig. 4
Fig. 4

Evolution of (a) the pump and (b) the forward and (c) the backward laser fields along the length of the fiber. Reflectivity of the output coupler, 0.5; length of the fiber, 100 cm.

Fig. 5
Fig. 5

(a) Forward and (b) backward output power as functions of the reflectivity of the output coupler for various launched pump powers: A, 11 W; B, 7 W; C, 4.5 W; D, 3 W. Fiber length, 80 cm.

Fig. 6
Fig. 6

(a) Forward and (b) backward output power as functions of the length of the fiber for various launched pump powers: A, 11 W; B, 8 W; C, 6 W; D, 4 W. Reflectivity of the output coupler, 0.5.

Fig. 7
Fig. 7

Forward output as a function of the launched pump power for a fiber 80 cm long and an output coupler reflectivity of 0.5.

Fig. 8
Fig. 8

Slope efficiency with respect to the launched pump power with variation in the fiber length and the reflectivity of the output coupler.

Tables (1)

Tables Icon

Table 1 Parameters Used in Modeling

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dN4dt=cσpPzN1-N4τ4-k4212N4N1+k2124N22,
dN2dt=2k4212N4N1-2k2124N22-N2τ2+β42N4τ4-cSzσeN2-σaN1,
N1=N-N2-N4,
dPzdz=-ηPσpN1Pz,
dSf,bzdz=±Sf,bzσeN2-σaN1,
Δα=cσeσPβ42P-σa/τ2cSσa+cσpβ42P+1/τ2+cSσe1+cσpPτ4 N,
Ip>Im=hνPσaτ2σeσPβ42,

Metrics