Abstract

The generation of femtosecond optical pulses centered at ∼620 nm directly from an all-solid-state laser oscillator is reported. Red pulses with pulse widths of the order of 170 fs were obtained with 24-mW average power at an 81-MHz repetition rate. They were achieved by intracavity frequency doubling of a mode-locked Cr4+:forsterite laser with a 1-mm-thick β-BaB2O4 crystal. The process of laser mode locking was modified by surface coating the doubling crystal.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, B. I. Greene, C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 38, 671–672 (1981).
    [CrossRef]
  2. W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
    [CrossRef]
  3. R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
    [CrossRef] [PubMed]
  4. A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 µm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
    [CrossRef]
  5. E. Slobodchikov, J. Ma, V. Kamalov, K. Tominaga, K. Yoshihara, “Cavity-dumped femtosecond Kerr-lens mode locking in a chromium-doped forsterite laser,” Opt. Lett. 21, 354–356 (1996).
    [CrossRef] [PubMed]
  6. V. P. Yanovsky, F. W. Wise, “Frequency doubling of 100-fs pulses with 50% efficiency by use of a resonant enhancement cavity,” Opt. Lett. 19, 1952–1954 (1994).
    [CrossRef] [PubMed]
  7. S. Backus, M. T. Asaki, C. Shi, H. C. Kapteyn, M. M. Murnane, “Intracavity frequency doubling in a Ti:sapphire laser: generation of 14-fs pulses at 416 nm,” Opt. Lett. 19, 399–401 (1994).
    [PubMed]
  8. L. J. Qian, X. Liu, F. W. Wise, “Femtosecond Kerr-lens mode locking with negative nonlinear phase shifts,” Opt. Lett. 24, 166–168 (1999).
    [CrossRef]
  9. P. T. Guerreiro, S. Ten, E. Slobochikov, Y. M. Kim, J. C. Woo, N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser with semiconductor saturable Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
    [CrossRef]
  10. Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 22, 1006–1008 (1997).
    [CrossRef] [PubMed]
  11. Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
    [CrossRef]
  12. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Properties of nonlinear optical crystals” in Handbook of Nonlinear Optical Crystals, 2nd ed., V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, eds. (Springer-Verlag, Berlin, 1997), Chap. 3.1.5, pp. 96–103.
  13. X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
    [CrossRef]
  14. J. C. Diettrich, I. T. McKinnie, D. M. Warrington, “Tunable high-repetition-rate visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite,” IEEE J. Quantum Electron. 35, 1718–1723 (1999).
    [CrossRef]

1999 (2)

L. J. Qian, X. Liu, F. W. Wise, “Femtosecond Kerr-lens mode locking with negative nonlinear phase shifts,” Opt. Lett. 24, 166–168 (1999).
[CrossRef]

J. C. Diettrich, I. T. McKinnie, D. M. Warrington, “Tunable high-repetition-rate visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite,” IEEE J. Quantum Electron. 35, 1718–1723 (1999).
[CrossRef]

1997 (4)

P. T. Guerreiro, S. Ten, E. Slobochikov, Y. M. Kim, J. C. Woo, N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser with semiconductor saturable Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 22, 1006–1008 (1997).
[CrossRef] [PubMed]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
[CrossRef]

1996 (1)

1994 (3)

V. P. Yanovsky, F. W. Wise, “Frequency doubling of 100-fs pulses with 50% efficiency by use of a resonant enhancement cavity,” Opt. Lett. 19, 1952–1954 (1994).
[CrossRef] [PubMed]

S. Backus, M. T. Asaki, C. Shi, H. C. Kapteyn, M. M. Murnane, “Intracavity frequency doubling in a Ti:sapphire laser: generation of 14-fs pulses at 416 nm,” Opt. Lett. 19, 399–401 (1994).
[PubMed]

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 µm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

1987 (1)

1985 (1)

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[CrossRef]

1981 (1)

R. L. Fork, B. I. Greene, C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 38, 671–672 (1981).
[CrossRef]

Asaki, M. T.

Backus, S.

Becker, P. C.

Brito Cruz, C. H.

Diettrich, J. C.

J. C. Diettrich, I. T. McKinnie, D. M. Warrington, “Tunable high-repetition-rate visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite,” IEEE J. Quantum Electron. 35, 1718–1723 (1999).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Properties of nonlinear optical crystals” in Handbook of Nonlinear Optical Crystals, 2nd ed., V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, eds. (Springer-Verlag, Berlin, 1997), Chap. 3.1.5, pp. 96–103.

Downer, M. C.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[CrossRef]

Fork, R. L.

R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
[CrossRef] [PubMed]

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[CrossRef]

R. L. Fork, B. I. Greene, C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 38, 671–672 (1981).
[CrossRef]

Greene, B. I.

R. L. Fork, B. I. Greene, C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 38, 671–672 (1981).
[CrossRef]

Guerreiro, P. T.

P. T. Guerreiro, S. Ten, E. Slobochikov, Y. M. Kim, J. C. Woo, N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser with semiconductor saturable Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Properties of nonlinear optical crystals” in Handbook of Nonlinear Optical Crystals, 2nd ed., V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, eds. (Springer-Verlag, Berlin, 1997), Chap. 3.1.5, pp. 96–103.

Itatani, T.

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 22, 1006–1008 (1997).
[CrossRef] [PubMed]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Kamalov, V.

Kapteyn, H. C.

Kim, Y. M.

P. T. Guerreiro, S. Ten, E. Slobochikov, Y. M. Kim, J. C. Woo, N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser with semiconductor saturable Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

Knox, W. H.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[CrossRef]

Kobayashi, K.

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 22, 1006–1008 (1997).
[CrossRef] [PubMed]

Liu, X.

L. J. Qian, X. Liu, F. W. Wise, “Femtosecond Kerr-lens mode locking with negative nonlinear phase shifts,” Opt. Lett. 24, 166–168 (1999).
[CrossRef]

X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
[CrossRef]

Ma, J.

McKinnie, I. T.

J. C. Diettrich, I. T. McKinnie, D. M. Warrington, “Tunable high-repetition-rate visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite,” IEEE J. Quantum Electron. 35, 1718–1723 (1999).
[CrossRef]

Murnane, M. M.

Nakagawa, T.

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 22, 1006–1008 (1997).
[CrossRef] [PubMed]

Nathel, H.

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 µm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Properties of nonlinear optical crystals” in Handbook of Nonlinear Optical Crystals, 2nd ed., V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, eds. (Springer-Verlag, Berlin, 1997), Chap. 3.1.5, pp. 96–103.

Peyghambarian, N.

P. T. Guerreiro, S. Ten, E. Slobochikov, Y. M. Kim, J. C. Woo, N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser with semiconductor saturable Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

Pollock, C. R.

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 µm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

Qian, L.

X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
[CrossRef]

Qian, L. J.

Sennaroglu, A.

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 µm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

Shank, C. V.

R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
[CrossRef] [PubMed]

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[CrossRef]

R. L. Fork, B. I. Greene, C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 38, 671–672 (1981).
[CrossRef]

Shi, C.

Slobochikov, E.

P. T. Guerreiro, S. Ten, E. Slobochikov, Y. M. Kim, J. C. Woo, N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser with semiconductor saturable Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

Slobodchikov, E.

Stolen, R. H.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[CrossRef]

Sugaya, T.

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 22, 1006–1008 (1997).
[CrossRef] [PubMed]

Ten, S.

P. T. Guerreiro, S. Ten, E. Slobochikov, Y. M. Kim, J. C. Woo, N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser with semiconductor saturable Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

Tominaga, K.

Torizuka, K.

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 22, 1006–1008 (1997).
[CrossRef] [PubMed]

Valdmanis, J. A.

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[CrossRef]

Warrington, D. M.

J. C. Diettrich, I. T. McKinnie, D. M. Warrington, “Tunable high-repetition-rate visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite,” IEEE J. Quantum Electron. 35, 1718–1723 (1999).
[CrossRef]

Wise, F. W.

Woo, J. C.

P. T. Guerreiro, S. Ten, E. Slobochikov, Y. M. Kim, J. C. Woo, N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser with semiconductor saturable Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

Yanovsky, V. P.

Yoshihara, K.

Zhang, Z.

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror,” Opt. Lett. 22, 1006–1008 (1997).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

R. L. Fork, B. I. Greene, C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 38, 671–672 (1981).
[CrossRef]

W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, C. V. Shank, J. A. Valdmanis, “Optical pulse compression to 8 fs at a 5-kHz repetition rate,” Appl. Phys. Lett. 46, 1120–1121 (1985).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 µm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

J. C. Diettrich, I. T. McKinnie, D. M. Warrington, “Tunable high-repetition-rate visible solid-state lasers based on intracavity frequency doubling of Cr:forsterite,” IEEE J. Quantum Electron. 35, 1718–1723 (1999).
[CrossRef]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997).
[CrossRef]

Opt. Commun. (2)

X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
[CrossRef]

P. T. Guerreiro, S. Ten, E. Slobochikov, Y. M. Kim, J. C. Woo, N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser with semiconductor saturable Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

Opt. Lett. (6)

Other (1)

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Properties of nonlinear optical crystals” in Handbook of Nonlinear Optical Crystals, 2nd ed., V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, eds. (Springer-Verlag, Berlin, 1997), Chap. 3.1.5, pp. 96–103.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the intracavity frequency-doubled femtosecond Cr4+:forsterite laser.

Fig. 2
Fig. 2

Autocorrelation trace (filled circles) and its sech2 fit (solid curve) of the Cr4+:forsterite laser output without the doubling crystal at 1230 nm. The FWHM of the autocorrelation trace is 215 fs.

Fig. 3
Fig. 3

Spectrum of the Cr4+:forsterite laser output without the doubling crystal.

Fig. 4
Fig. 4

Red output spectrum of the intracavity frequency-doubled femtosecond Cr4+:forsterite laser.

Fig. 5
Fig. 5

Autocorrelation trace of the intracavity frequency-doubled Cr4+:forsterite laser (filled circles) and its sech2 fit (solid curve). The FWHM autocorrelation pulse width is 240 fs, corresponding to a pulse width of 168 fs. SHG, second-harmonic generation.

Fig. 6
Fig. 6

Output spectra of the intracavity-doubled femtosecond Cr4+:forsterite laser for (a) frequency-doubled light and (b) the corresponding fundamental light with different BBO crystal angles.

Fig. 7
Fig. 7

Reflection spectra of the BBO crystal at three incidence angles: 0°, 1°, and 2°. Their reflection minima reside at 1256, 1262, and 1267 nm, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n02=A+B/λ2-C-Dλ2,
ne2=E+F/λ2-G-Hλ2,

Metrics