Abstract

The threshold pump energies at 1.06 µm and Raman gain coefficients of stimulated Raman scattering (SRS) at 1.54 µm have been measured in both single-pass and half-resonator configurations at various methane pressures. In the single-pass configuration, the Raman gain coefficients of the backward and forward SRS are 0.32 and 0.23 cm/GW at 95 atm, respectively. The backward Raman gain coefficient is higher than the forward Raman gain coefficient. This gain reduction is caused by the depletion of local pump intensity, the phase-matching conditions, and the transient effect of the high amplification rate in the forward SRS process. In the half-resonator configuration, the Raman gain coefficient was 0.46 cm/GW at 75 atm of methane.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Marker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in electrical field strength,” Phys. Rev. A 137, 801–818 (1965).
    [CrossRef]
  2. J. C. White, “Tunable lasers,” in Vol. 59 of Topics in Applied Physics, L. F. Mollenauer, J. C. White, eds. (Springer-Verlag, Berlin, 1987), Chap. 4.
  3. R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated occurrence and competition between stimulated optical scattering processes in gases,” J. Appl. Phys. 38, 2254–2260 (1967).
    [CrossRef]
  4. G. I. Kachen, W. H. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phy. Rev. A 16, 1657–1664 (1977).
    [CrossRef]
  5. J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for applications to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
    [CrossRef]
  6. J. O. White, “High efficiency backward Stokes Raman conversion in deuterium,” J. Opt. Soc. Am. B 7, 785–789 (1990).
    [CrossRef]
  7. K. Sentrayan, A. Michael, V. Kushawaha, “Intense backward Raman lasers in CH4 and H2,” Appl. Opt. 32, 930–934 (1993).
    [CrossRef] [PubMed]
  8. R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850–1852 (1963).
    [CrossRef]
  9. Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. A 137, 1787–1805 (1965).
    [CrossRef]
  10. W. H. Lowdermilk, G. I. Kachen, “Spatial and temporal intensity distribution of stimulated Raman emission,” J. Appl. Phys. 50, 3871–3878 (1979).
    [CrossRef]
  11. K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992).
    [CrossRef]
  12. Z. Chu, U. N. Singh, T. D. Wilkerson, “Multiple Stokes wavelength generation in H2, D2, and CH4 for lidar aerosol measurements,” Appl. Opt. 30, 4350–4357 (1990).
    [CrossRef]
  13. K. Sentrayan, V. Kushawaha, “Competition between steady state stimulated Raman and Brillouin scattering processes in CH4 and H2,” Appl. Phys. D 26, 1554–1560 (1993).
    [CrossRef]
  14. H. J. Kong, Y. G. Jeon, J. K. Kim, “Efficient Raman conversion through backward stimulated Brillouin scattering,” Appl. Opt. 34, 993–995 (1995).
    [CrossRef] [PubMed]
  15. D. C. Hann, J. Pointer, D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. QE-22, 332–336 (1986).
    [CrossRef]
  16. R. J. Heeman, H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
    [CrossRef]
  17. J. J. Ottusch, D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. QE-24, 2076–2080 (1988).
    [CrossRef]
  18. R. B. Lopert, “Measured stimulated Raman gain in methane,” Ph.D. dissertation (University of California, Davis, Davis, California 95616, 1983).
  19. J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Experimental and numerical study of stimulated Raman scattering in an astigmatic focus,” IEEE J. Quantum Electron. 29, 2267–2272 (1993).
    [CrossRef]
  20. D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane,” Appl. Phys. D 19, 1421–1427 (1986).
    [CrossRef]
  21. C. G. Parazzoli, W. W. Bauchman, R. D. Stultz, “Numerical and experimental investigation of a stimulated Raman half resonator,” IEEE J. Quantum Electron. QE-24, 872–880 (1988).
    [CrossRef]
  22. Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, D. F. Heller, “Intercavity Raman lasers,” IEEE J. Quantum Electron. 25, 208–213 (1989).
    [CrossRef]
  23. A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane: experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994).
    [CrossRef]
  24. Z. Chu, U. N. Singh, T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54 µm eye-safe radiation,” Opt. Commun. 75, 173–178 (1990).
    [CrossRef]
  25. L. de Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, H. van den Bergh, “Experimental investigation of high power single pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5042 (1997).
    [CrossRef] [PubMed]
  26. L. Schoulepnikoff, V. Mitev, “Numerical method for the modeling of high-gain single-pass cascade stimulated Raman scattering in gases,” J. Opt. Soc. Am. B 14, 62–75 (1997).
    [CrossRef]
  27. N. J. Everall, J. P. Partanen, J. R. M. Barr, M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987).
    [CrossRef]
  28. M. Maiser, W. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
    [CrossRef]
  29. D. C. Cotter, D. C. Hanna, R. Wratt, “Infrared stimulated Raman generation: effects of gain focusing on threshold and tuning behaviour,” Appl. Phys. 8, 333–340 (1975).
    [CrossRef]
  30. G. Haidacher, M. Maiser, “Explanation of anomalies in the stimulated Raman scattering in H2 gas,” IEEE J. Quantum Electron. QE-10, 784–787 (1974).
  31. J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “The stimulated Raman scattering threshold for a nondiffraction-limited pump beam,” IEEE J. Quantum Electron. 28, 1930–1936 (1992).
    [CrossRef]
  32. R. D. Stultz, D. E. Nieuwsma, E. Gregor, “Eyesafe high-pulse-rate laser progress at Hughes,” in Eyesafe lasers: Components, Systems, and Applications, A. M. Johnson, ed., Proc. SPIE1419, 64–74 (1991).

1997 (2)

1995 (2)

H. J. Kong, Y. G. Jeon, J. K. Kim, “Efficient Raman conversion through backward stimulated Brillouin scattering,” Appl. Opt. 34, 993–995 (1995).
[CrossRef] [PubMed]

R. J. Heeman, H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
[CrossRef]

1994 (1)

A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane: experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994).
[CrossRef]

1993 (3)

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Experimental and numerical study of stimulated Raman scattering in an astigmatic focus,” IEEE J. Quantum Electron. 29, 2267–2272 (1993).
[CrossRef]

K. Sentrayan, V. Kushawaha, “Competition between steady state stimulated Raman and Brillouin scattering processes in CH4 and H2,” Appl. Phys. D 26, 1554–1560 (1993).
[CrossRef]

K. Sentrayan, A. Michael, V. Kushawaha, “Intense backward Raman lasers in CH4 and H2,” Appl. Opt. 32, 930–934 (1993).
[CrossRef] [PubMed]

1992 (2)

K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992).
[CrossRef]

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “The stimulated Raman scattering threshold for a nondiffraction-limited pump beam,” IEEE J. Quantum Electron. 28, 1930–1936 (1992).
[CrossRef]

1990 (3)

1989 (1)

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, D. F. Heller, “Intercavity Raman lasers,” IEEE J. Quantum Electron. 25, 208–213 (1989).
[CrossRef]

1988 (2)

C. G. Parazzoli, W. W. Bauchman, R. D. Stultz, “Numerical and experimental investigation of a stimulated Raman half resonator,” IEEE J. Quantum Electron. QE-24, 872–880 (1988).
[CrossRef]

J. J. Ottusch, D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. QE-24, 2076–2080 (1988).
[CrossRef]

1987 (1)

N. J. Everall, J. P. Partanen, J. R. M. Barr, M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987).
[CrossRef]

1986 (2)

D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane,” Appl. Phys. D 19, 1421–1427 (1986).
[CrossRef]

D. C. Hann, J. Pointer, D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. QE-22, 332–336 (1986).
[CrossRef]

1979 (2)

W. H. Lowdermilk, G. I. Kachen, “Spatial and temporal intensity distribution of stimulated Raman emission,” J. Appl. Phys. 50, 3871–3878 (1979).
[CrossRef]

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for applications to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[CrossRef]

1977 (1)

G. I. Kachen, W. H. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phy. Rev. A 16, 1657–1664 (1977).
[CrossRef]

1975 (1)

D. C. Cotter, D. C. Hanna, R. Wratt, “Infrared stimulated Raman generation: effects of gain focusing on threshold and tuning behaviour,” Appl. Phys. 8, 333–340 (1975).
[CrossRef]

1974 (1)

G. Haidacher, M. Maiser, “Explanation of anomalies in the stimulated Raman scattering in H2 gas,” IEEE J. Quantum Electron. QE-10, 784–787 (1974).

1969 (1)

M. Maiser, W. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[CrossRef]

1967 (1)

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated occurrence and competition between stimulated optical scattering processes in gases,” J. Appl. Phys. 38, 2254–2260 (1967).
[CrossRef]

1965 (2)

P. D. Marker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in electrical field strength,” Phys. Rev. A 137, 801–818 (1965).
[CrossRef]

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. A 137, 1787–1805 (1965).
[CrossRef]

1963 (1)

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850–1852 (1963).
[CrossRef]

Ackerhalt, J. R.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, D. F. Heller, “Intercavity Raman lasers,” IEEE J. Quantum Electron. 25, 208–213 (1989).
[CrossRef]

Band, Y. B.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, D. F. Heller, “Intercavity Raman lasers,” IEEE J. Quantum Electron. 25, 208–213 (1989).
[CrossRef]

Barr, J. R. M.

N. J. Everall, J. P. Partanen, J. R. M. Barr, M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987).
[CrossRef]

Bauchman, W. W.

C. G. Parazzoli, W. W. Bauchman, R. D. Stultz, “Numerical and experimental investigation of a stimulated Raman half resonator,” IEEE J. Quantum Electron. QE-24, 872–880 (1988).
[CrossRef]

Bloembergen, N.

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. A 137, 1787–1805 (1965).
[CrossRef]

Brink, D. J.

D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane,” Appl. Phys. D 19, 1421–1427 (1986).
[CrossRef]

Burger, H. P.

D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane,” Appl. Phys. D 19, 1421–1427 (1986).
[CrossRef]

Calpini, B.

Chu, Z.

Z. Chu, U. N. Singh, T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54 µm eye-safe radiation,” Opt. Commun. 75, 173–178 (1990).
[CrossRef]

Z. Chu, U. N. Singh, T. D. Wilkerson, “Multiple Stokes wavelength generation in H2, D2, and CH4 for lidar aerosol measurements,” Appl. Opt. 30, 4350–4357 (1990).
[CrossRef]

Cotter, D. C.

D. C. Cotter, D. C. Hanna, R. Wratt, “Infrared stimulated Raman generation: effects of gain focusing on threshold and tuning behaviour,” Appl. Phys. 8, 333–340 (1975).
[CrossRef]

de Kock, T. N.

D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane,” Appl. Phys. D 19, 1421–1427 (1986).
[CrossRef]

de Schoulepnikoff, L.

Eimerl, D.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for applications to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[CrossRef]

Everall, N. J.

N. J. Everall, J. P. Partanen, J. R. M. Barr, M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987).
[CrossRef]

Giordmaine, J. A.

M. Maiser, W. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[CrossRef]

Godfried, H. P.

R. J. Heeman, H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
[CrossRef]

Goldhar, J.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for applications to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[CrossRef]

Gregor, E.

R. D. Stultz, D. E. Nieuwsma, E. Gregor, “Eyesafe high-pulse-rate laser progress at Hughes,” in Eyesafe lasers: Components, Systems, and Applications, A. M. Johnson, ed., Proc. SPIE1419, 64–74 (1991).

Hagenlocker, E. E.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated occurrence and competition between stimulated optical scattering processes in gases,” J. Appl. Phys. 38, 2254–2260 (1967).
[CrossRef]

Haidacher, G.

G. Haidacher, M. Maiser, “Explanation of anomalies in the stimulated Raman scattering in H2 gas,” IEEE J. Quantum Electron. QE-10, 784–787 (1974).

Hann, D. C.

D. C. Hann, J. Pointer, D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. QE-22, 332–336 (1986).
[CrossRef]

Hanna, D. C.

D. C. Cotter, D. C. Hanna, R. Wratt, “Infrared stimulated Raman generation: effects of gain focusing on threshold and tuning behaviour,” Appl. Phys. 8, 333–340 (1975).
[CrossRef]

Heeman, R. J.

R. J. Heeman, H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
[CrossRef]

Heller, D. F.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, D. F. Heller, “Intercavity Raman lasers,” IEEE J. Quantum Electron. 25, 208–213 (1989).
[CrossRef]

Hellwarth, R. W.

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850–1852 (1963).
[CrossRef]

Jeon, Y. G.

Kachen, G. I.

W. H. Lowdermilk, G. I. Kachen, “Spatial and temporal intensity distribution of stimulated Raman emission,” J. Appl. Phys. 50, 3871–3878 (1979).
[CrossRef]

G. I. Kachen, W. H. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phy. Rev. A 16, 1657–1664 (1977).
[CrossRef]

Kaiser, W.

M. Maiser, W. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[CrossRef]

Kazzaz, A.

A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane: experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994).
[CrossRef]

Kim, J. K.

Kong, H. J.

Krasinski, J. S.

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, D. F. Heller, “Intercavity Raman lasers,” IEEE J. Quantum Electron. 25, 208–213 (1989).
[CrossRef]

Kushawaha, V.

K. Sentrayan, V. Kushawaha, “Competition between steady state stimulated Raman and Brillouin scattering processes in CH4 and H2,” Appl. Phys. D 26, 1554–1560 (1993).
[CrossRef]

K. Sentrayan, A. Michael, V. Kushawaha, “Intense backward Raman lasers in CH4 and H2,” Appl. Opt. 32, 930–934 (1993).
[CrossRef] [PubMed]

K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992).
[CrossRef]

Lerou, R. J. L.

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Experimental and numerical study of stimulated Raman scattering in an astigmatic focus,” IEEE J. Quantum Electron. 29, 2267–2272 (1993).
[CrossRef]

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “The stimulated Raman scattering threshold for a nondiffraction-limited pump beam,” IEEE J. Quantum Electron. 28, 1930–1936 (1992).
[CrossRef]

Lopert, R. B.

R. B. Lopert, “Measured stimulated Raman gain in methane,” Ph.D. dissertation (University of California, Davis, Davis, California 95616, 1983).

Lowdermilk, W. H.

W. H. Lowdermilk, G. I. Kachen, “Spatial and temporal intensity distribution of stimulated Raman emission,” J. Appl. Phys. 50, 3871–3878 (1979).
[CrossRef]

G. I. Kachen, W. H. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phy. Rev. A 16, 1657–1664 (1977).
[CrossRef]

Maiser, M.

G. Haidacher, M. Maiser, “Explanation of anomalies in the stimulated Raman scattering in H2 gas,” IEEE J. Quantum Electron. QE-10, 784–787 (1974).

M. Maiser, W. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[CrossRef]

Major, L.

K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992).
[CrossRef]

Marker, P. D.

P. D. Marker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in electrical field strength,” Phys. Rev. A 137, 801–818 (1965).
[CrossRef]

Michael, A.

K. Sentrayan, A. Michael, V. Kushawaha, “Intense backward Raman lasers in CH4 and H2,” Appl. Opt. 32, 930–934 (1993).
[CrossRef] [PubMed]

K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992).
[CrossRef]

Minck, R. W.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated occurrence and competition between stimulated optical scattering processes in gases,” J. Appl. Phys. 38, 2254–2260 (1967).
[CrossRef]

Mitev, V.

Murray, J. R.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for applications to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[CrossRef]

Nieuwsma, D. E.

R. D. Stultz, D. E. Nieuwsma, E. Gregor, “Eyesafe high-pulse-rate laser progress at Hughes,” in Eyesafe lasers: Components, Systems, and Applications, A. M. Johnson, ed., Proc. SPIE1419, 64–74 (1991).

Ottusch, J. J.

J. J. Ottusch, D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. QE-24, 2076–2080 (1988).
[CrossRef]

Parazzoli, C. G.

C. G. Parazzoli, W. W. Bauchman, R. D. Stultz, “Numerical and experimental investigation of a stimulated Raman half resonator,” IEEE J. Quantum Electron. QE-24, 872–880 (1988).
[CrossRef]

Partanen, J. P.

N. J. Everall, J. P. Partanen, J. R. M. Barr, M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987).
[CrossRef]

Pointer, J.

D. C. Hann, J. Pointer, D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. QE-22, 332–336 (1986).
[CrossRef]

Pratt, D. J.

D. C. Hann, J. Pointer, D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. QE-22, 332–336 (1986).
[CrossRef]

Preussler, D. R.

D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane,” Appl. Phys. D 19, 1421–1427 (1986).
[CrossRef]

Rado, W. G.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated occurrence and competition between stimulated optical scattering processes in gases,” J. Appl. Phys. 38, 2254–2260 (1967).
[CrossRef]

Ravnitsky, G.

A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane: experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994).
[CrossRef]

Rockwell, D. A.

J. J. Ottusch, D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. QE-24, 2076–2080 (1988).
[CrossRef]

Ruschin, S.

A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane: experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994).
[CrossRef]

Schoulepnikoff, L.

Sentrayan, K.

K. Sentrayan, A. Michael, V. Kushawaha, “Intense backward Raman lasers in CH4 and H2,” Appl. Opt. 32, 930–934 (1993).
[CrossRef] [PubMed]

K. Sentrayan, V. Kushawaha, “Competition between steady state stimulated Raman and Brillouin scattering processes in CH4 and H2,” Appl. Phys. D 26, 1554–1560 (1993).
[CrossRef]

K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992).
[CrossRef]

Shaw, M. J.

N. J. Everall, J. P. Partanen, J. R. M. Barr, M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987).
[CrossRef]

Shen, Y. R.

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. A 137, 1787–1805 (1965).
[CrossRef]

Shoshan, I.

A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane: experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994).
[CrossRef]

Simeonov, V.

Singh, U. N.

Z. Chu, U. N. Singh, T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54 µm eye-safe radiation,” Opt. Commun. 75, 173–178 (1990).
[CrossRef]

Z. Chu, U. N. Singh, T. D. Wilkerson, “Multiple Stokes wavelength generation in H2, D2, and CH4 for lidar aerosol measurements,” Appl. Opt. 30, 4350–4357 (1990).
[CrossRef]

Strauss, J. A.

D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane,” Appl. Phys. D 19, 1421–1427 (1986).
[CrossRef]

Stultz, R. D.

C. G. Parazzoli, W. W. Bauchman, R. D. Stultz, “Numerical and experimental investigation of a stimulated Raman half resonator,” IEEE J. Quantum Electron. QE-24, 872–880 (1988).
[CrossRef]

R. D. Stultz, D. E. Nieuwsma, E. Gregor, “Eyesafe high-pulse-rate laser progress at Hughes,” in Eyesafe lasers: Components, Systems, and Applications, A. M. Johnson, ed., Proc. SPIE1419, 64–74 (1991).

Szoke, A.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for applications to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[CrossRef]

Terhune, R. W.

P. D. Marker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in electrical field strength,” Phys. Rev. A 137, 801–818 (1965).
[CrossRef]

van den Bergh, H.

van den Heuvel, J. C.

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Experimental and numerical study of stimulated Raman scattering in an astigmatic focus,” IEEE J. Quantum Electron. 29, 2267–2272 (1993).
[CrossRef]

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “The stimulated Raman scattering threshold for a nondiffraction-limited pump beam,” IEEE J. Quantum Electron. 28, 1930–1936 (1992).
[CrossRef]

van Putten, F. J. M.

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Experimental and numerical study of stimulated Raman scattering in an astigmatic focus,” IEEE J. Quantum Electron. 29, 2267–2272 (1993).
[CrossRef]

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “The stimulated Raman scattering threshold for a nondiffraction-limited pump beam,” IEEE J. Quantum Electron. 28, 1930–1936 (1992).
[CrossRef]

White, J. C.

J. C. White, “Tunable lasers,” in Vol. 59 of Topics in Applied Physics, L. F. Mollenauer, J. C. White, eds. (Springer-Verlag, Berlin, 1987), Chap. 4.

White, J. O.

Wilkerson, T. D.

Z. Chu, U. N. Singh, T. D. Wilkerson, “Multiple Stokes wavelength generation in H2, D2, and CH4 for lidar aerosol measurements,” Appl. Opt. 30, 4350–4357 (1990).
[CrossRef]

Z. Chu, U. N. Singh, T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54 µm eye-safe radiation,” Opt. Commun. 75, 173–178 (1990).
[CrossRef]

Wratt, R.

D. C. Cotter, D. C. Hanna, R. Wratt, “Infrared stimulated Raman generation: effects of gain focusing on threshold and tuning behaviour,” Appl. Phys. 8, 333–340 (1975).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. (1)

D. C. Cotter, D. C. Hanna, R. Wratt, “Infrared stimulated Raman generation: effects of gain focusing on threshold and tuning behaviour,” Appl. Phys. 8, 333–340 (1975).
[CrossRef]

Appl. Phys. B (1)

K. Sentrayan, L. Major, A. Michael, V. Kushawaha, “Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser,” Appl. Phys. B 55, 311–318 (1992).
[CrossRef]

Appl. Phys. D (2)

K. Sentrayan, V. Kushawaha, “Competition between steady state stimulated Raman and Brillouin scattering processes in CH4 and H2,” Appl. Phys. D 26, 1554–1560 (1993).
[CrossRef]

D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, D. R. Preussler, “Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane,” Appl. Phys. D 19, 1421–1427 (1986).
[CrossRef]

IEEE J. Quantum Electron. (10)

C. G. Parazzoli, W. W. Bauchman, R. D. Stultz, “Numerical and experimental investigation of a stimulated Raman half resonator,” IEEE J. Quantum Electron. QE-24, 872–880 (1988).
[CrossRef]

Y. B. Band, J. R. Ackerhalt, J. S. Krasinski, D. F. Heller, “Intercavity Raman lasers,” IEEE J. Quantum Electron. 25, 208–213 (1989).
[CrossRef]

A. Kazzaz, S. Ruschin, I. Shoshan, G. Ravnitsky, “Stimulated Raman scattering in methane: experimental optimization and numerical model,” IEEE J. Quantum Electron. 30, 3017–3024 (1994).
[CrossRef]

G. Haidacher, M. Maiser, “Explanation of anomalies in the stimulated Raman scattering in H2 gas,” IEEE J. Quantum Electron. QE-10, 784–787 (1974).

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “The stimulated Raman scattering threshold for a nondiffraction-limited pump beam,” IEEE J. Quantum Electron. 28, 1930–1936 (1992).
[CrossRef]

J. C. van den Heuvel, F. J. M. van Putten, R. J. L. Lerou, “Experimental and numerical study of stimulated Raman scattering in an astigmatic focus,” IEEE J. Quantum Electron. 29, 2267–2272 (1993).
[CrossRef]

D. C. Hann, J. Pointer, D. J. Pratt, “Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. QE-22, 332–336 (1986).
[CrossRef]

R. J. Heeman, H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
[CrossRef]

J. J. Ottusch, D. A. Rockwell, “Measurement of Raman gain coefficients of hydrogen, deuterium, and methane,” IEEE J. Quantum Electron. QE-24, 2076–2080 (1988).
[CrossRef]

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman pulse compression of excimer lasers for applications to laser fusion,” IEEE J. Quantum Electron. QE-15, 342–368 (1979).
[CrossRef]

J. Appl. Phys. (2)

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Stimulated occurrence and competition between stimulated optical scattering processes in gases,” J. Appl. Phys. 38, 2254–2260 (1967).
[CrossRef]

W. H. Lowdermilk, G. I. Kachen, “Spatial and temporal intensity distribution of stimulated Raman emission,” J. Appl. Phys. 50, 3871–3878 (1979).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

N. J. Everall, J. P. Partanen, J. R. M. Barr, M. J. Shaw, “Threshold measurements of stimulated Raman scattering in gases using picosecond KrF laser pulses,” Opt. Commun. 64, 393–397 (1987).
[CrossRef]

Z. Chu, U. N. Singh, T. D. Wilkerson, “A self-seeded SRS system for the generation of 1.54 µm eye-safe radiation,” Opt. Commun. 75, 173–178 (1990).
[CrossRef]

Phy. Rev. A (1)

G. I. Kachen, W. H. Lowdermilk, “Relaxation oscillations in stimulated Raman scattering,” Phy. Rev. A 16, 1657–1664 (1977).
[CrossRef]

Phys. Rev. (2)

R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850–1852 (1963).
[CrossRef]

M. Maiser, W. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580–599 (1969).
[CrossRef]

Phys. Rev. A (2)

Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. A 137, 1787–1805 (1965).
[CrossRef]

P. D. Marker, R. W. Terhune, “Study of optical effects due to an induced polarization third order in electrical field strength,” Phys. Rev. A 137, 801–818 (1965).
[CrossRef]

Other (3)

J. C. White, “Tunable lasers,” in Vol. 59 of Topics in Applied Physics, L. F. Mollenauer, J. C. White, eds. (Springer-Verlag, Berlin, 1987), Chap. 4.

R. B. Lopert, “Measured stimulated Raman gain in methane,” Ph.D. dissertation (University of California, Davis, Davis, California 95616, 1983).

R. D. Stultz, D. E. Nieuwsma, E. Gregor, “Eyesafe high-pulse-rate laser progress at Hughes,” in Eyesafe lasers: Components, Systems, and Applications, A. M. Johnson, ed., Proc. SPIE1419, 64–74 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental arrangement: 1, 1.06-µm Nd:YAG laser; 2, attenuator, 3, polarizing beam splitter; 4, quarter-wave plate; 5, dichroic mirror [1.54 µm highly reflective (HR) and 1.06 µm antireflective (AR)]; 6, focusing lens (1.54 and 1.06 µm AR for a single-pass configuration or 1.54 µm HR and 1.06 µm AR, for the half-resonator configuration); 7, Raman cell; 8, collimating lens (1.54 and 1.06 µm AR); 9, dichroic filter (1.54 µm AR and 1.06 µm HR); 10, energy meter.

Fig. 2
Fig. 2

Theoretical steady-state Raman gain coefficients of forward and backward SRS versus methane pressure.

Fig. 3
Fig. 3

Theoretical (dashed curves) and measured threshold pump energies of forward (filled squares) and backward (filled circles) SRS versus methane pressure.

Fig. 4
Fig. 4

Measured Raman gain coefficients of forward (filled squares) and backward (filled circles) SRS versus methane pressures.

Fig. 5
Fig. 5

Raman gain coefficients (filled circles) and threshold pump energies (open circles) versus methane pressures in a Raman half-resonator.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

gRf=2λs2ΔNf/πc2hνsΔνR+ΔνDfσ/Ω,
gRb=2λs2ΔNb/πc2hνsΔνR+ΔνDb+Δνpσ/Ω,
Pth=λs/4gR1+1+Gλp/λs tan-1l/b1/22,

Metrics