Abstract

Modal birefringence and its sensitivity to temperature and hydrostatic pressure were measured versus wavelength in three elliptical-core fibers and one fiber with stress-induced birefringence. We carried out the measurements in the spectral range from 633 to 843 nm by using interferometric methods. In fibers with elliptical cores all the measured parameters showed high chromatic dependence, whereas in fibers with stress-induced birefringence this dependence was weak. We modeled the dispersion characteristics of two elliptical-core fibers by using the modified perturbation approach first proposed by Kumar. The modification consists of introducing into the expression for the normalized propagation constants an additional perturbation term that contains information about stress-induced birefringence. The results of modeling show that the temperature and pressure sensitivity of elliptical-core fiber are associated primarily with variations in stress induced by these parameters. The agreement between measured and calculated values of sensitivity in the worst case was equal to 20% for modal birefringence and temperature sensitivity and 50% for pressure sensitivity. Lower agreement between measured and calculated values of pressure sensitivity is most probably associated with uncertainties in the material constants used in modeling.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Bock, W. Urbanczyk, M. R. H. Voet, “Selected applications of fiber-optic sensors based on highly birefringent fibers in engineering mechanics,” in Proceedings of the International Conference on Applications of Photonic Technology: Sensing, Signal Processing, and Communication, Toronto, Canada, 21–23 June 1994, G. A. Lampropoulos, J. Chrostowski, R. M. Measures, eds. (Plenum, New York, 1995), pp. 311–316.
    [CrossRef]
  2. W. J. Bock, W. Urbanczyk, “Temperature-desensitization of fiber-optic pressure sensor by simultaneous measurement of pressure and temperature,” Appl. Opt. 37, 3897–3901 (1998).
    [CrossRef]
  3. N. Furstenau, M. Schmidt, W. J. Bock, W. Urbanczyk, “Dynamic pressure sensing with a fiber-optic polarimetric pressure transducer with two-wavelength passive quadrature readout,” Appl. Opt. 37, 663–671 (1998).
    [CrossRef]
  4. J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
    [CrossRef]
  5. S. C. Rashleigh, “Origins and polarization control of polarization effects in single-mode fibers,” J. Lightwave Technol. LT-1, 312–331 (1983).
    [CrossRef]
  6. R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Boston, 1995).
  7. S. C. Rashleigh, M. J. Marrone, “Polarization holding in elliptical-core birefringent fibers,” IEEE Trans. Microwave Theory Tech. MTT-30, 1503–1511 (1982).
    [CrossRef]
  8. S. C. Rashleigh, “Wavelength dependence of birefringence in highly birefringent fibers,” Opt. Lett. 7, 294–296 (1982).
    [CrossRef] [PubMed]
  9. D. N. Payne, A. J. Barlow, J. J. Ramskov Hansen, “Development of low- and high-birefringence optical fiber,” IEEE J. Quantum Electron. QE-17, 477–487 (1982).
    [CrossRef]
  10. W. Urbanczyk, W. J. Bock, “Influence of dispersion on sensitivity of highly birefringent fibers to temperature and hydrostatic pressure,” Appl. Opt. 37, 3176–3180 (1998).
    [CrossRef]
  11. W. Urbanczyk, W. J. Bock, “Analysis of dispersion effects for white-light interferometric fiber-optic sensors,” Appl. Opt. 33, 124–129 (1994).
    [CrossRef] [PubMed]
  12. A. Kumar, R. K. Varshney, “Propagation characteristics of highly elliptical core optical waveguides: a perturbation approach,” Opt. Quantum Electron. 16, 349–354 (1984).
    [CrossRef]
  13. M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, W. Urbanczyk, “Theoretical and experimental analysis of thermal stress effects on modal polarization properties of highly birefringent optical fibers,” J. Lightwave Technol. LT-14, 585–591 (1996).
    [CrossRef]
  14. M. Fontaine, “Computations of optical birefringence characteristics of highly eccentric elliptical core fibers under various thermal stress conditions,” J. Appl. Phys. 75, 68–73 (1994).
    [CrossRef]
  15. W. J. Bock, W. Urbanczyk, “Measurements of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing type interferometry,” Appl. Opt. 32, 5841–5848 (1993).
    [CrossRef] [PubMed]
  16. W. Urbanczyk, W. J. Bock, M. Fontaine, “Characterization of highly birefringent optical fibers using interferometric techniques,” IEEE Trans. Instrum. Meas. 46, 1–6 (1997).
  17. F. Zhang, J. W. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 24, 2213–2218 (1993).
    [CrossRef]
  18. D. Wong, S. Poole, “Temperature independent birefringent fibers,” Int. J. Optoelectron. 8, 179–186 (1993).
  19. R. Kaul, “Pressure sensitivity of rocking filters fabricated in an elliptical-core optical fiber,” Opt. Lett. 20, 1000–1001 (1995).
    [CrossRef] [PubMed]
  20. W. J. Bock, A. W. Domanski, T. R. Wolinski, “Influence of high hydrostatic pressure on beat length in highly birefringent single-mode fibers,” Appl. Opt. 29, 3484–3488 (1990).
    [CrossRef] [PubMed]
  21. I. P. Kaminow, V. Ramaswamy, “Single-polarization optical fibers: slab model,” Appl. Phys. Lett. 34, 268–270 (1979).
    [CrossRef]
  22. N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. QE-16, 1267–1271 (1980).
    [CrossRef]
  23. J. Sakai, T. Kimura, “Birefringence caused by thermal stress in elliptically deformed core optical fibers,” IEEE J. Quantum Electron. QE-18, 1899–1909 (1982).
    [CrossRef]
  24. N. Lagakos, J. A. Bucaro, R. Hughes, “Acoustic sensitivity predictions of single-mode optical fibers using Brillouin scattering,” Appl. Opt. 19, 3668–3670 (1980).
    [CrossRef] [PubMed]
  25. H. Scholze, Glass. Nature, Structure, and Properties (Springer-Verlag, New York, 1991), pp. 246–294.
  26. O. V. Mazurkin, M. V. Streltsina, T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data (Elsevier, Amsterdam, 1983).
  27. K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
    [CrossRef]
  28. J. Sakai, T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron. QE-17, 1041–1051 (1981).
    [CrossRef]
  29. Y. Verbant, “Polymers for switching, fibers for sensing,” Ph.D. dissertation (Vrije Universiteit Brussel, Brussels, 1996).
  30. N. P. Bansal, R. H. Doremus, Handbook of Glass Properties (Academic, London, 1986).
  31. A. Osaka, K. Takahashi, “The elastic constant and molar volume of sodium and potassium germanate glasses,” J. Non-Cryst. Solids 70, 243–252 (1985).
    [CrossRef]
  32. Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship between composition, density, and refractive index for germania silica glasses,” J. Non-Cryst. Solids 27, 29–37 (1978).
    [CrossRef]
  33. W. Primack, D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
    [CrossRef]
  34. G. Gosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersion for some optical fiber glasses,” J. Lightwave Technol. LT-12, 1338–1342 (1994).
    [CrossRef]
  35. S. Takahashi, S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
    [CrossRef]
  36. K. S. Kim, M. E. Lines, “Temperature dependence of chromatic dispersion in dispersion-shifted fibers: experiment and analysis,” J. Appl. Phys. 73, 2069–2074 (1993).
    [CrossRef]
  37. M. E. Lines, “Physical origin of the temperature dependence of chromatic dispersion in fused silica,” J. Appl. Phys. 73, 2075–2079 (1993).
    [CrossRef]
  38. Y. G. Han, C. S. Kim, K. Oh, U. C. Peak, Y. Chung, “Performance enhancement of strain and temperature sensors using long period fiber gratings,” in 13th International Conference on Optical Fiber Sensors, B. Kim, K. Hotate, eds., Proc. SPIE3746, 58–61 (1999).
  39. T. Mizunami, T. V. Djambova, T. Niiho, S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. LT-18, 230–235 (2000).
    [CrossRef]
  40. M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fiber gratings high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
    [CrossRef]
  41. K. S. Chiang, D. Wong, “Design of highly birefringent fibers to optimize or minimize pressure-induced birefringence,” IEEE Photon. Technol. Lett. 3, 654–656 (1991).
    [CrossRef]
  42. K. S. Chiang, “Pressure-induced birefringence in a coated highly birefringent optical fibers,” J. Lightwave Technol. LT-8, 1850–1855 (1990).
    [CrossRef]
  43. R. Passy, A. L. Gama, N. Gisin, J. P. von der Weid, “Pressure dependence of polarization mode dispersion in HiBi fibers,” J. Ligthwave Technol. LT-10, 1527–1531 (1992).
    [CrossRef]
  44. V. Bernát, A. L. Yarin, “Analytical solution for stress and material birefringence in optical fibers with noncircular cladding,” J. Lightwave Technol. LT-10, 413–417 (1992).
    [CrossRef]

2000

T. Mizunami, T. V. Djambova, T. Niiho, S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. LT-18, 230–235 (2000).
[CrossRef]

1998

1997

W. Urbanczyk, W. J. Bock, M. Fontaine, “Characterization of highly birefringent optical fibers using interferometric techniques,” IEEE Trans. Instrum. Meas. 46, 1–6 (1997).

1996

M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, W. Urbanczyk, “Theoretical and experimental analysis of thermal stress effects on modal polarization properties of highly birefringent optical fibers,” J. Lightwave Technol. LT-14, 585–591 (1996).
[CrossRef]

1995

1994

W. Urbanczyk, W. J. Bock, “Analysis of dispersion effects for white-light interferometric fiber-optic sensors,” Appl. Opt. 33, 124–129 (1994).
[CrossRef] [PubMed]

M. Fontaine, “Computations of optical birefringence characteristics of highly eccentric elliptical core fibers under various thermal stress conditions,” J. Appl. Phys. 75, 68–73 (1994).
[CrossRef]

G. Gosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersion for some optical fiber glasses,” J. Lightwave Technol. LT-12, 1338–1342 (1994).
[CrossRef]

1993

K. S. Kim, M. E. Lines, “Temperature dependence of chromatic dispersion in dispersion-shifted fibers: experiment and analysis,” J. Appl. Phys. 73, 2069–2074 (1993).
[CrossRef]

M. E. Lines, “Physical origin of the temperature dependence of chromatic dispersion in fused silica,” J. Appl. Phys. 73, 2075–2079 (1993).
[CrossRef]

F. Zhang, J. W. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 24, 2213–2218 (1993).
[CrossRef]

D. Wong, S. Poole, “Temperature independent birefringent fibers,” Int. J. Optoelectron. 8, 179–186 (1993).

W. J. Bock, W. Urbanczyk, “Measurements of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing type interferometry,” Appl. Opt. 32, 5841–5848 (1993).
[CrossRef] [PubMed]

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fiber gratings high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

1992

R. Passy, A. L. Gama, N. Gisin, J. P. von der Weid, “Pressure dependence of polarization mode dispersion in HiBi fibers,” J. Ligthwave Technol. LT-10, 1527–1531 (1992).
[CrossRef]

V. Bernát, A. L. Yarin, “Analytical solution for stress and material birefringence in optical fibers with noncircular cladding,” J. Lightwave Technol. LT-10, 413–417 (1992).
[CrossRef]

1991

K. S. Chiang, D. Wong, “Design of highly birefringent fibers to optimize or minimize pressure-induced birefringence,” IEEE Photon. Technol. Lett. 3, 654–656 (1991).
[CrossRef]

1990

K. S. Chiang, “Pressure-induced birefringence in a coated highly birefringent optical fibers,” J. Lightwave Technol. LT-8, 1850–1855 (1990).
[CrossRef]

W. J. Bock, A. W. Domanski, T. R. Wolinski, “Influence of high hydrostatic pressure on beat length in highly birefringent single-mode fibers,” Appl. Opt. 29, 3484–3488 (1990).
[CrossRef] [PubMed]

1986

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

1985

A. Osaka, K. Takahashi, “The elastic constant and molar volume of sodium and potassium germanate glasses,” J. Non-Cryst. Solids 70, 243–252 (1985).
[CrossRef]

1984

A. Kumar, R. K. Varshney, “Propagation characteristics of highly elliptical core optical waveguides: a perturbation approach,” Opt. Quantum Electron. 16, 349–354 (1984).
[CrossRef]

1983

S. C. Rashleigh, “Origins and polarization control of polarization effects in single-mode fibers,” J. Lightwave Technol. LT-1, 312–331 (1983).
[CrossRef]

1982

S. C. Rashleigh, M. J. Marrone, “Polarization holding in elliptical-core birefringent fibers,” IEEE Trans. Microwave Theory Tech. MTT-30, 1503–1511 (1982).
[CrossRef]

D. N. Payne, A. J. Barlow, J. J. Ramskov Hansen, “Development of low- and high-birefringence optical fiber,” IEEE J. Quantum Electron. QE-17, 477–487 (1982).
[CrossRef]

J. Sakai, T. Kimura, “Birefringence caused by thermal stress in elliptically deformed core optical fibers,” IEEE J. Quantum Electron. QE-18, 1899–1909 (1982).
[CrossRef]

S. C. Rashleigh, “Wavelength dependence of birefringence in highly birefringent fibers,” Opt. Lett. 7, 294–296 (1982).
[CrossRef] [PubMed]

1981

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

J. Sakai, T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron. QE-17, 1041–1051 (1981).
[CrossRef]

1980

N. Lagakos, J. A. Bucaro, R. Hughes, “Acoustic sensitivity predictions of single-mode optical fibers using Brillouin scattering,” Appl. Opt. 19, 3668–3670 (1980).
[CrossRef] [PubMed]

N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. QE-16, 1267–1271 (1980).
[CrossRef]

1979

I. P. Kaminow, V. Ramaswamy, “Single-polarization optical fibers: slab model,” Appl. Phys. Lett. 34, 268–270 (1979).
[CrossRef]

S. Takahashi, S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
[CrossRef]

1978

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship between composition, density, and refractive index for germania silica glasses,” J. Non-Cryst. Solids 27, 29–37 (1978).
[CrossRef]

1959

W. Primack, D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[CrossRef]

Bansal, N. P.

N. P. Bansal, R. H. Doremus, Handbook of Glass Properties (Academic, London, 1986).

Barlow, A. J.

D. N. Payne, A. J. Barlow, J. J. Ramskov Hansen, “Development of low- and high-birefringence optical fiber,” IEEE J. Quantum Electron. QE-17, 477–487 (1982).
[CrossRef]

Bernát, V.

V. Bernát, A. L. Yarin, “Analytical solution for stress and material birefringence in optical fibers with noncircular cladding,” J. Lightwave Technol. LT-10, 413–417 (1992).
[CrossRef]

Bock, W. J.

W. Urbanczyk, W. J. Bock, “Influence of dispersion on sensitivity of highly birefringent fibers to temperature and hydrostatic pressure,” Appl. Opt. 37, 3176–3180 (1998).
[CrossRef]

N. Furstenau, M. Schmidt, W. J. Bock, W. Urbanczyk, “Dynamic pressure sensing with a fiber-optic polarimetric pressure transducer with two-wavelength passive quadrature readout,” Appl. Opt. 37, 663–671 (1998).
[CrossRef]

W. J. Bock, W. Urbanczyk, “Temperature-desensitization of fiber-optic pressure sensor by simultaneous measurement of pressure and temperature,” Appl. Opt. 37, 3897–3901 (1998).
[CrossRef]

W. Urbanczyk, W. J. Bock, M. Fontaine, “Characterization of highly birefringent optical fibers using interferometric techniques,” IEEE Trans. Instrum. Meas. 46, 1–6 (1997).

M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, W. Urbanczyk, “Theoretical and experimental analysis of thermal stress effects on modal polarization properties of highly birefringent optical fibers,” J. Lightwave Technol. LT-14, 585–591 (1996).
[CrossRef]

W. Urbanczyk, W. J. Bock, “Analysis of dispersion effects for white-light interferometric fiber-optic sensors,” Appl. Opt. 33, 124–129 (1994).
[CrossRef] [PubMed]

W. J. Bock, W. Urbanczyk, “Measurements of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing type interferometry,” Appl. Opt. 32, 5841–5848 (1993).
[CrossRef] [PubMed]

W. J. Bock, A. W. Domanski, T. R. Wolinski, “Influence of high hydrostatic pressure on beat length in highly birefringent single-mode fibers,” Appl. Opt. 29, 3484–3488 (1990).
[CrossRef] [PubMed]

W. J. Bock, W. Urbanczyk, M. R. H. Voet, “Selected applications of fiber-optic sensors based on highly birefringent fibers in engineering mechanics,” in Proceedings of the International Conference on Applications of Photonic Technology: Sensing, Signal Processing, and Communication, Toronto, Canada, 21–23 June 1994, G. A. Lampropoulos, J. Chrostowski, R. M. Measures, eds. (Plenum, New York, 1995), pp. 311–316.
[CrossRef]

Bucaro, J. A.

Chiang, K. S.

K. S. Chiang, D. Wong, “Design of highly birefringent fibers to optimize or minimize pressure-induced birefringence,” IEEE Photon. Technol. Lett. 3, 654–656 (1991).
[CrossRef]

K. S. Chiang, “Pressure-induced birefringence in a coated highly birefringent optical fibers,” J. Lightwave Technol. LT-8, 1850–1855 (1990).
[CrossRef]

Chow, Y. T.

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fiber gratings high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Chung, Y.

Y. G. Han, C. S. Kim, K. Oh, U. C. Peak, Y. Chung, “Performance enhancement of strain and temperature sensors using long period fiber gratings,” in 13th International Conference on Optical Fiber Sensors, B. Kim, K. Hotate, eds., Proc. SPIE3746, 58–61 (1999).

Dakin, J. P.

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fiber gratings high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Djambova, T. V.

T. Mizunami, T. V. Djambova, T. Niiho, S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. LT-18, 230–235 (2000).
[CrossRef]

Domanski, A. W.

Doremus, R. H.

N. P. Bansal, R. H. Doremus, Handbook of Glass Properties (Academic, London, 1986).

Dyott, R. B.

R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Boston, 1995).

Edahiro, T.

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

Endo, M.

G. Gosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersion for some optical fiber glasses,” J. Lightwave Technol. LT-12, 1338–1342 (1994).
[CrossRef]

Fontaine, M.

W. Urbanczyk, W. J. Bock, M. Fontaine, “Characterization of highly birefringent optical fibers using interferometric techniques,” IEEE Trans. Instrum. Meas. 46, 1–6 (1997).

M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, W. Urbanczyk, “Theoretical and experimental analysis of thermal stress effects on modal polarization properties of highly birefringent optical fibers,” J. Lightwave Technol. LT-14, 585–591 (1996).
[CrossRef]

M. Fontaine, “Computations of optical birefringence characteristics of highly eccentric elliptical core fibers under various thermal stress conditions,” J. Appl. Phys. 75, 68–73 (1994).
[CrossRef]

Furstenau, N.

Gama, A. L.

R. Passy, A. L. Gama, N. Gisin, J. P. von der Weid, “Pressure dependence of polarization mode dispersion in HiBi fibers,” J. Ligthwave Technol. LT-10, 1527–1531 (1992).
[CrossRef]

Gisin, N.

R. Passy, A. L. Gama, N. Gisin, J. P. von der Weid, “Pressure dependence of polarization mode dispersion in HiBi fibers,” J. Ligthwave Technol. LT-10, 1527–1531 (1992).
[CrossRef]

Gosh, G.

G. Gosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersion for some optical fiber glasses,” J. Lightwave Technol. LT-12, 1338–1342 (1994).
[CrossRef]

Gupta, S.

T. Mizunami, T. V. Djambova, T. Niiho, S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. LT-18, 230–235 (2000).
[CrossRef]

Han, Y. G.

Y. G. Han, C. S. Kim, K. Oh, U. C. Peak, Y. Chung, “Performance enhancement of strain and temperature sensors using long period fiber gratings,” in 13th International Conference on Optical Fiber Sensors, B. Kim, K. Hotate, eds., Proc. SPIE3746, 58–61 (1999).

Hosaka, T.

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

Huang, Y. Y.

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship between composition, density, and refractive index for germania silica glasses,” J. Non-Cryst. Solids 27, 29–37 (1978).
[CrossRef]

Hughes, R.

Imoto, N.

N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. QE-16, 1267–1271 (1980).
[CrossRef]

Iwasaki, T.

G. Gosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersion for some optical fiber glasses,” J. Lightwave Technol. LT-12, 1338–1342 (1994).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow, V. Ramaswamy, “Single-polarization optical fibers: slab model,” Appl. Phys. Lett. 34, 268–270 (1979).
[CrossRef]

Kaul, R.

Kim, C. S.

Y. G. Han, C. S. Kim, K. Oh, U. C. Peak, Y. Chung, “Performance enhancement of strain and temperature sensors using long period fiber gratings,” in 13th International Conference on Optical Fiber Sensors, B. Kim, K. Hotate, eds., Proc. SPIE3746, 58–61 (1999).

Kim, K. S.

K. S. Kim, M. E. Lines, “Temperature dependence of chromatic dispersion in dispersion-shifted fibers: experiment and analysis,” J. Appl. Phys. 73, 2069–2074 (1993).
[CrossRef]

Kimura, T.

J. Sakai, T. Kimura, “Birefringence caused by thermal stress in elliptically deformed core optical fibers,” IEEE J. Quantum Electron. QE-18, 1899–1909 (1982).
[CrossRef]

J. Sakai, T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron. QE-17, 1041–1051 (1981).
[CrossRef]

Kumar, A.

A. Kumar, R. K. Varshney, “Propagation characteristics of highly elliptical core optical waveguides: a perturbation approach,” Opt. Quantum Electron. 16, 349–354 (1984).
[CrossRef]

Lagakos, N.

Lines, M. E.

M. E. Lines, “Physical origin of the temperature dependence of chromatic dispersion in fused silica,” J. Appl. Phys. 73, 2075–2079 (1993).
[CrossRef]

K. S. Kim, M. E. Lines, “Temperature dependence of chromatic dispersion in dispersion-shifted fibers: experiment and analysis,” J. Appl. Phys. 73, 2069–2074 (1993).
[CrossRef]

Lit, J. W.

F. Zhang, J. W. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 24, 2213–2218 (1993).
[CrossRef]

Marrone, M. J.

S. C. Rashleigh, M. J. Marrone, “Polarization holding in elliptical-core birefringent fibers,” IEEE Trans. Microwave Theory Tech. MTT-30, 1503–1511 (1982).
[CrossRef]

Mazurkin, O. V.

O. V. Mazurkin, M. V. Streltsina, T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data (Elsevier, Amsterdam, 1983).

Mizunami, T.

T. Mizunami, T. V. Djambova, T. Niiho, S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. LT-18, 230–235 (2000).
[CrossRef]

Niiho, T.

T. Mizunami, T. V. Djambova, T. Niiho, S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. LT-18, 230–235 (2000).
[CrossRef]

Noda, J.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

Oh, K.

Y. G. Han, C. S. Kim, K. Oh, U. C. Peak, Y. Chung, “Performance enhancement of strain and temperature sensors using long period fiber gratings,” in 13th International Conference on Optical Fiber Sensors, B. Kim, K. Hotate, eds., Proc. SPIE3746, 58–61 (1999).

Okamoto, K.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

Osaka, A.

A. Osaka, K. Takahashi, “The elastic constant and molar volume of sodium and potassium germanate glasses,” J. Non-Cryst. Solids 70, 243–252 (1985).
[CrossRef]

Passy, R.

R. Passy, A. L. Gama, N. Gisin, J. P. von der Weid, “Pressure dependence of polarization mode dispersion in HiBi fibers,” J. Ligthwave Technol. LT-10, 1527–1531 (1992).
[CrossRef]

Payne, D. N.

D. N. Payne, A. J. Barlow, J. J. Ramskov Hansen, “Development of low- and high-birefringence optical fiber,” IEEE J. Quantum Electron. QE-17, 477–487 (1982).
[CrossRef]

Peak, U. C.

Y. G. Han, C. S. Kim, K. Oh, U. C. Peak, Y. Chung, “Performance enhancement of strain and temperature sensors using long period fiber gratings,” in 13th International Conference on Optical Fiber Sensors, B. Kim, K. Hotate, eds., Proc. SPIE3746, 58–61 (1999).

Poole, S.

D. Wong, S. Poole, “Temperature independent birefringent fibers,” Int. J. Optoelectron. 8, 179–186 (1993).

Post, D.

W. Primack, D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[CrossRef]

Primack, W.

W. Primack, D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[CrossRef]

Ramaswamy, V.

I. P. Kaminow, V. Ramaswamy, “Single-polarization optical fibers: slab model,” Appl. Phys. Lett. 34, 268–270 (1979).
[CrossRef]

Ramskov Hansen, J. J.

D. N. Payne, A. J. Barlow, J. J. Ramskov Hansen, “Development of low- and high-birefringence optical fiber,” IEEE J. Quantum Electron. QE-17, 477–487 (1982).
[CrossRef]

Rashleigh, S. C.

S. C. Rashleigh, “Origins and polarization control of polarization effects in single-mode fibers,” J. Lightwave Technol. LT-1, 312–331 (1983).
[CrossRef]

S. C. Rashleigh, M. J. Marrone, “Polarization holding in elliptical-core birefringent fibers,” IEEE Trans. Microwave Theory Tech. MTT-30, 1503–1511 (1982).
[CrossRef]

S. C. Rashleigh, “Wavelength dependence of birefringence in highly birefringent fibers,” Opt. Lett. 7, 294–296 (1982).
[CrossRef] [PubMed]

Reekie, L.

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fiber gratings high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Sakai, J.

J. Sakai, T. Kimura, “Birefringence caused by thermal stress in elliptically deformed core optical fibers,” IEEE J. Quantum Electron. QE-18, 1899–1909 (1982).
[CrossRef]

J. Sakai, T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron. QE-17, 1041–1051 (1981).
[CrossRef]

N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. QE-16, 1267–1271 (1980).
[CrossRef]

Sarkar, A.

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship between composition, density, and refractive index for germania silica glasses,” J. Non-Cryst. Solids 27, 29–37 (1978).
[CrossRef]

Sasaki, Y.

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

Schmidt, M.

Scholze, H.

H. Scholze, Glass. Nature, Structure, and Properties (Springer-Verlag, New York, 1991), pp. 246–294.

Schultz, P. C.

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship between composition, density, and refractive index for germania silica glasses,” J. Non-Cryst. Solids 27, 29–37 (1978).
[CrossRef]

Shibata, S.

S. Takahashi, S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
[CrossRef]

Shvaiko-Shvaikovskaya, T. P.

O. V. Mazurkin, M. V. Streltsina, T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data (Elsevier, Amsterdam, 1983).

Streltsina, M. V.

O. V. Mazurkin, M. V. Streltsina, T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data (Elsevier, Amsterdam, 1983).

Takahashi, K.

A. Osaka, K. Takahashi, “The elastic constant and molar volume of sodium and potassium germanate glasses,” J. Non-Cryst. Solids 70, 243–252 (1985).
[CrossRef]

Takahashi, S.

S. Takahashi, S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
[CrossRef]

Tsuchiya, H.

N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. QE-16, 1267–1271 (1980).
[CrossRef]

Tzolov, V. P.

M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, W. Urbanczyk, “Theoretical and experimental analysis of thermal stress effects on modal polarization properties of highly birefringent optical fibers,” J. Lightwave Technol. LT-14, 585–591 (1996).
[CrossRef]

Urbanczyk, W.

W. J. Bock, W. Urbanczyk, “Temperature-desensitization of fiber-optic pressure sensor by simultaneous measurement of pressure and temperature,” Appl. Opt. 37, 3897–3901 (1998).
[CrossRef]

N. Furstenau, M. Schmidt, W. J. Bock, W. Urbanczyk, “Dynamic pressure sensing with a fiber-optic polarimetric pressure transducer with two-wavelength passive quadrature readout,” Appl. Opt. 37, 663–671 (1998).
[CrossRef]

W. Urbanczyk, W. J. Bock, “Influence of dispersion on sensitivity of highly birefringent fibers to temperature and hydrostatic pressure,” Appl. Opt. 37, 3176–3180 (1998).
[CrossRef]

W. Urbanczyk, W. J. Bock, M. Fontaine, “Characterization of highly birefringent optical fibers using interferometric techniques,” IEEE Trans. Instrum. Meas. 46, 1–6 (1997).

M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, W. Urbanczyk, “Theoretical and experimental analysis of thermal stress effects on modal polarization properties of highly birefringent optical fibers,” J. Lightwave Technol. LT-14, 585–591 (1996).
[CrossRef]

W. Urbanczyk, W. J. Bock, “Analysis of dispersion effects for white-light interferometric fiber-optic sensors,” Appl. Opt. 33, 124–129 (1994).
[CrossRef] [PubMed]

W. J. Bock, W. Urbanczyk, “Measurements of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing type interferometry,” Appl. Opt. 32, 5841–5848 (1993).
[CrossRef] [PubMed]

W. J. Bock, W. Urbanczyk, M. R. H. Voet, “Selected applications of fiber-optic sensors based on highly birefringent fibers in engineering mechanics,” in Proceedings of the International Conference on Applications of Photonic Technology: Sensing, Signal Processing, and Communication, Toronto, Canada, 21–23 June 1994, G. A. Lampropoulos, J. Chrostowski, R. M. Measures, eds. (Plenum, New York, 1995), pp. 311–316.
[CrossRef]

Varshney, R. K.

A. Kumar, R. K. Varshney, “Propagation characteristics of highly elliptical core optical waveguides: a perturbation approach,” Opt. Quantum Electron. 16, 349–354 (1984).
[CrossRef]

Verbant, Y.

Y. Verbant, “Polymers for switching, fibers for sensing,” Ph.D. dissertation (Vrije Universiteit Brussel, Brussels, 1996).

Voet, M. R. H.

W. J. Bock, W. Urbanczyk, M. R. H. Voet, “Selected applications of fiber-optic sensors based on highly birefringent fibers in engineering mechanics,” in Proceedings of the International Conference on Applications of Photonic Technology: Sensing, Signal Processing, and Communication, Toronto, Canada, 21–23 June 1994, G. A. Lampropoulos, J. Chrostowski, R. M. Measures, eds. (Plenum, New York, 1995), pp. 311–316.
[CrossRef]

von der Weid, J. P.

R. Passy, A. L. Gama, N. Gisin, J. P. von der Weid, “Pressure dependence of polarization mode dispersion in HiBi fibers,” J. Ligthwave Technol. LT-10, 1527–1531 (1992).
[CrossRef]

Wolinski, T. R.

Wong, D.

D. Wong, S. Poole, “Temperature independent birefringent fibers,” Int. J. Optoelectron. 8, 179–186 (1993).

K. S. Chiang, D. Wong, “Design of highly birefringent fibers to optimize or minimize pressure-induced birefringence,” IEEE Photon. Technol. Lett. 3, 654–656 (1991).
[CrossRef]

Wu, B.

M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, W. Urbanczyk, “Theoretical and experimental analysis of thermal stress effects on modal polarization properties of highly birefringent optical fibers,” J. Lightwave Technol. LT-14, 585–591 (1996).
[CrossRef]

Xu, M. G.

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fiber gratings high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

Yarin, A. L.

V. Bernát, A. L. Yarin, “Analytical solution for stress and material birefringence in optical fibers with noncircular cladding,” J. Lightwave Technol. LT-10, 413–417 (1992).
[CrossRef]

Yoshizawa, N.

N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. QE-16, 1267–1271 (1980).
[CrossRef]

Zhang, F.

F. Zhang, J. W. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 24, 2213–2218 (1993).
[CrossRef]

Appl. Opt.

F. Zhang, J. W. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 24, 2213–2218 (1993).
[CrossRef]

W. J. Bock, A. W. Domanski, T. R. Wolinski, “Influence of high hydrostatic pressure on beat length in highly birefringent single-mode fibers,” Appl. Opt. 29, 3484–3488 (1990).
[CrossRef] [PubMed]

W. J. Bock, W. Urbanczyk, “Measurements of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing type interferometry,” Appl. Opt. 32, 5841–5848 (1993).
[CrossRef] [PubMed]

W. Urbanczyk, W. J. Bock, “Analysis of dispersion effects for white-light interferometric fiber-optic sensors,” Appl. Opt. 33, 124–129 (1994).
[CrossRef] [PubMed]

W. J. Bock, W. Urbanczyk, “Temperature-desensitization of fiber-optic pressure sensor by simultaneous measurement of pressure and temperature,” Appl. Opt. 37, 3897–3901 (1998).
[CrossRef]

W. Urbanczyk, W. J. Bock, “Influence of dispersion on sensitivity of highly birefringent fibers to temperature and hydrostatic pressure,” Appl. Opt. 37, 3176–3180 (1998).
[CrossRef]

N. Furstenau, M. Schmidt, W. J. Bock, W. Urbanczyk, “Dynamic pressure sensing with a fiber-optic polarimetric pressure transducer with two-wavelength passive quadrature readout,” Appl. Opt. 37, 663–671 (1998).
[CrossRef]

N. Lagakos, J. A. Bucaro, R. Hughes, “Acoustic sensitivity predictions of single-mode optical fibers using Brillouin scattering,” Appl. Opt. 19, 3668–3670 (1980).
[CrossRef] [PubMed]

Appl. Phys. Lett.

I. P. Kaminow, V. Ramaswamy, “Single-polarization optical fibers: slab model,” Appl. Phys. Lett. 34, 268–270 (1979).
[CrossRef]

Electron. Lett.

M. G. Xu, L. Reekie, Y. T. Chow, J. P. Dakin, “Optical in-fiber gratings high pressure sensor,” Electron. Lett. 29, 398–399 (1993).
[CrossRef]

IEEE J. Quantum Electron.

N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy,” IEEE J. Quantum Electron. QE-16, 1267–1271 (1980).
[CrossRef]

J. Sakai, T. Kimura, “Birefringence caused by thermal stress in elliptically deformed core optical fibers,” IEEE J. Quantum Electron. QE-18, 1899–1909 (1982).
[CrossRef]

K. Okamoto, T. Hosaka, T. Edahiro, “Stress analysis of optical fibers by a finite element method,” IEEE J. Quantum Electron. QE-17, 2123–2129 (1981).
[CrossRef]

J. Sakai, T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron. QE-17, 1041–1051 (1981).
[CrossRef]

D. N. Payne, A. J. Barlow, J. J. Ramskov Hansen, “Development of low- and high-birefringence optical fiber,” IEEE J. Quantum Electron. QE-17, 477–487 (1982).
[CrossRef]

IEEE Photon. Technol. Lett.

K. S. Chiang, D. Wong, “Design of highly birefringent fibers to optimize or minimize pressure-induced birefringence,” IEEE Photon. Technol. Lett. 3, 654–656 (1991).
[CrossRef]

IEEE Trans. Instrum. Meas.

W. Urbanczyk, W. J. Bock, M. Fontaine, “Characterization of highly birefringent optical fibers using interferometric techniques,” IEEE Trans. Instrum. Meas. 46, 1–6 (1997).

IEEE Trans. Microwave Theory Tech.

S. C. Rashleigh, M. J. Marrone, “Polarization holding in elliptical-core birefringent fibers,” IEEE Trans. Microwave Theory Tech. MTT-30, 1503–1511 (1982).
[CrossRef]

Int. J. Optoelectron.

D. Wong, S. Poole, “Temperature independent birefringent fibers,” Int. J. Optoelectron. 8, 179–186 (1993).

J. Appl. Phys.

M. Fontaine, “Computations of optical birefringence characteristics of highly eccentric elliptical core fibers under various thermal stress conditions,” J. Appl. Phys. 75, 68–73 (1994).
[CrossRef]

K. S. Kim, M. E. Lines, “Temperature dependence of chromatic dispersion in dispersion-shifted fibers: experiment and analysis,” J. Appl. Phys. 73, 2069–2074 (1993).
[CrossRef]

M. E. Lines, “Physical origin of the temperature dependence of chromatic dispersion in fused silica,” J. Appl. Phys. 73, 2075–2079 (1993).
[CrossRef]

W. Primack, D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959).
[CrossRef]

J. Lightwave Technol.

G. Gosh, M. Endo, T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersion for some optical fiber glasses,” J. Lightwave Technol. LT-12, 1338–1342 (1994).
[CrossRef]

T. Mizunami, T. V. Djambova, T. Niiho, S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. LT-18, 230–235 (2000).
[CrossRef]

K. S. Chiang, “Pressure-induced birefringence in a coated highly birefringent optical fibers,” J. Lightwave Technol. LT-8, 1850–1855 (1990).
[CrossRef]

M. Fontaine, B. Wu, V. P. Tzolov, W. J. Bock, W. Urbanczyk, “Theoretical and experimental analysis of thermal stress effects on modal polarization properties of highly birefringent optical fibers,” J. Lightwave Technol. LT-14, 585–591 (1996).
[CrossRef]

J. Noda, K. Okamoto, Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. LT-4, 1071–1089 (1986).
[CrossRef]

S. C. Rashleigh, “Origins and polarization control of polarization effects in single-mode fibers,” J. Lightwave Technol. LT-1, 312–331 (1983).
[CrossRef]

V. Bernát, A. L. Yarin, “Analytical solution for stress and material birefringence in optical fibers with noncircular cladding,” J. Lightwave Technol. LT-10, 413–417 (1992).
[CrossRef]

J. Ligthwave Technol.

R. Passy, A. L. Gama, N. Gisin, J. P. von der Weid, “Pressure dependence of polarization mode dispersion in HiBi fibers,” J. Ligthwave Technol. LT-10, 1527–1531 (1992).
[CrossRef]

J. Non-Cryst. Solids

S. Takahashi, S. Shibata, “Thermal variation of attenuation for optical fibers,” J. Non-Cryst. Solids 30, 359–370 (1979).
[CrossRef]

A. Osaka, K. Takahashi, “The elastic constant and molar volume of sodium and potassium germanate glasses,” J. Non-Cryst. Solids 70, 243–252 (1985).
[CrossRef]

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship between composition, density, and refractive index for germania silica glasses,” J. Non-Cryst. Solids 27, 29–37 (1978).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

A. Kumar, R. K. Varshney, “Propagation characteristics of highly elliptical core optical waveguides: a perturbation approach,” Opt. Quantum Electron. 16, 349–354 (1984).
[CrossRef]

Other

R. B. Dyott, Elliptical Fiber Waveguides (Artech House, Boston, 1995).

W. J. Bock, W. Urbanczyk, M. R. H. Voet, “Selected applications of fiber-optic sensors based on highly birefringent fibers in engineering mechanics,” in Proceedings of the International Conference on Applications of Photonic Technology: Sensing, Signal Processing, and Communication, Toronto, Canada, 21–23 June 1994, G. A. Lampropoulos, J. Chrostowski, R. M. Measures, eds. (Plenum, New York, 1995), pp. 311–316.
[CrossRef]

H. Scholze, Glass. Nature, Structure, and Properties (Springer-Verlag, New York, 1991), pp. 246–294.

O. V. Mazurkin, M. V. Streltsina, T. P. Shvaiko-Shvaikovskaya, Handbook of Glass Data (Elsevier, Amsterdam, 1983).

Y. Verbant, “Polymers for switching, fibers for sensing,” Ph.D. dissertation (Vrije Universiteit Brussel, Brussels, 1996).

N. P. Bansal, R. H. Doremus, Handbook of Glass Properties (Academic, London, 1986).

Y. G. Han, C. S. Kim, K. Oh, U. C. Peak, Y. Chung, “Performance enhancement of strain and temperature sensors using long period fiber gratings,” in 13th International Conference on Optical Fiber Sensors, B. Kim, K. Hotate, eds., Proc. SPIE3746, 58–61 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

System for measuring modal birefringence B versus wavelength.

Fig. 2
Fig. 2

System for measuring fiber sensitivity to temperature ∂ΔB/∂T and hydrostatic pressure ∂ΔB/∂p.

Fig. 3
Fig. 3

Rectangular-core and elliptical-core waveguides. The differences in squared refractive indices between these two structures are equal to n co 2 - n cl 2 in regions 1, 3, and 4 and n cl 2 - n co 2 in region 2.

Fig. 4
Fig. 4

Distribution of (a) the thermally induced material birefringence Δn x T (x, y) - Δn y T (x, y) for T 0 = 20 °C and (b) the pressure-induced material birefringence Δn x p (x, y) - Δn y p (x, y) for applied pressure p = 1 GPa, in one-quarter of fiber 951228.

Fig. 5
Fig. 5

Calculated and measured values of total modal birefringence B versus wavelength for two elliptical-core fibers: (a) 951228; (b) 970516/76. B g and B s represent the geometric and stress components of total modal birefringence, B = B g + B s .

Fig. 6
Fig. 6

Calculated and measured values of sensitivity of modal birefringence to temperature ∂B/∂T (dotted curve) versus wavelength for two elliptical-core fibers: (a) 951228; (b) 970516/76. The solid curve represents the stress contribution (∂B s /∂T) to the overall fiber sensitivity.

Fig. 7
Fig. 7

Deformation of the elliptical core in fiber 951228 under the applied pressure of 10 GPa.

Fig. 8
Fig. 8

Calculated and measured values of sensitivity of modal birefringence to hydrostatic pressure ∂B/∂p versus wavelength for two elliptical-core fibers: (a) 951228; (b) 970516/76. The dotted curve represents pressure sensitivity calculated while disregarding core deformation.

Tables (4)

Tables Icon

Table 1 Basic Characteristics of Investigated Fibers

Tables Icon

Table 2 Results of Measurement of Modal Birefringence B versus Wavelength

Tables Icon

Table 3 Results of Measurement of Temperature Sensitivity ∂B/∂T (1/K) versus Wavelength

Tables Icon

Table 4 Results of Measurement of Pressure Sensitivity ∂B/∂p (1/MPa) versus Wavelength

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

LB=ΔL/ΔM,
B=λ/LB,
BT=λLΔTΔM+Δγ180,
n2x, y=n2x+n2y,
n2x=nco22for|x|<a2ncl2-nco22for|x|>a2,
n2y=nco22for|y|<b2ncl2-nco22for|y|>b2.
Ψx, y=ΨxxΨyy.
β0i=β1i2+β2i2,1/2
P0i2=β0i2-k02ncl2k02nco2-ncl2.
Pi2=P0i2+PIi2+PIIi2,
PIi2=1nco2-ncl2 |Ψix, y|2δn2dxdy |Ψix, y|2dxdy,
δn2=nco2-ncl2 in regions 1, 3, and 4ncl2-nco2 in region 2.
n1=n+C1σ1+C2σ2, n2=n+C1σ2+C2σ1, n1=n+C2σ1+σ2,
nix, y=nx, y+Δnix, y,
Δnxx, y=C1σ1x, y+C2σ2x, y,  Δnyx, y=C1σ2x, y+C2σ1x, y.
δn2=2nx, yΔnix, y+Δnix, y2.
PIIi2=1nco2-ncl2× |Ψix,y|22nx, yΔnix,y+Δnix,y2dxdy |Ψix, y|2dxdyfor i=x, y.
B=Px2nco2-ncl2+ncl21/2-Py2nco2-ncl2+ncl21/2.
Bg=P0x2+PIx2nco2-ncl2+ncl21/2-P0y2+PIy2)nco2-ncl2+ncl21/2,
Bs=B-Bg.
ν=1-mνSiO2+mνGeO2,
σ1,2T=σxT+σyT±σxT+σyT+4τxyT21/22.
BT=BG+BsT=BGT-BsT0Ts-T0.
Δnix, y=Δn1Tx, y+ΔniPx, y for i=x, y.
Bp=Bp=1 GPa-Bp=0p.

Metrics