Abstract

An interchip free-space optical interconnection module is investigated to solve the pin-input–output bottleneck at the interface of silicon integrated circuits. The scalability of the photonic circuit is theoretically analyzed by use of the minimum feature size requirement of each diffractive element used. The study showed that interconnection densities of 1000–2000 channels/cm is possible for a 40-mm interconnection length with a 3-mm-thick optical substrate. Diffraction-limited imaging capability has been demonstrated using a fabricated prototype, confirming its applicability for interchip free-space interconnections. Photonic circuit insertion losses of -23.4 dB for TE polarization and -25.9 dB for TM polarization as well as a polarization-dependent loss of 2.5 dB are found to be caused primarily by a pair of binary linear gratings used for beam deflections. Design modifications aiming at insertion loss reduction and further improvement of tolerance capabilities are also discussed.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, 181 Metro Drive, Suite 450, San Jose, Calif. 95110 (1997), http://www.semichips.org/index.htm .
  2. F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
    [CrossRef]
  3. A. V. Krishnamoorthy, A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996).
    [CrossRef]
  4. M. R. Feldman, C. C. Guest, “Interconnect density capabilities of computer generated holograms for optical interconnection of very large scale integrated circuits,” Appl. Opt. 28, 3134–3137 (1989).
    [CrossRef] [PubMed]
  5. J. Jahns, B. Acklin, “Integrated planar optical imaging system with high interconnection density,” Opt. Lett. 18, 1594–1596 (1993).
    [CrossRef] [PubMed]
  6. R. K. Kostuk, J.-H. Yeh, M. Fink, “Distributed optical data bus for board-level interconnects,” Appl. Opt. 32, 5010–5021 (1993).
    [CrossRef] [PubMed]
  7. J. Jahns, F. Sauer, B. Tell, K. F. B.- Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).
    [CrossRef]
  8. T. J. Cloonan, “Comparative study of optical and electronic interconnection technologies for large asynchronous transfer mode packet switching applications,” Opt. Eng. 33, 1512–1523 (1994).
    [CrossRef]
  9. F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” Appl. Opt. 33, 1601–1618 (1994).
    [CrossRef] [PubMed]
  10. K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994).
    [CrossRef] [PubMed]
  11. L. J. Camp, R. Sharma, M. R. Feldman, “Guided-wave and free-space optical interconnects for parallel-processing systems: a comparison,” Appl. Opt. 33, 6168–6180 (1994).
    [CrossRef] [PubMed]
  12. R. T. Chen, F. Li, M. Dubinovsky, O. Ershov, “Si-based surface-relief polygonal gratings for 1-to-many wafer scale optical clock signal distribution,” IEEE Photon. Technol. Lett. 8, 1038–1040 (1996).
    [CrossRef]
  13. Y. Liu, B. Robertson, D. V. Plant, H. S. Hinton, W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 36, 3127–3141 (1997).
    [CrossRef] [PubMed]
  14. Y. Liu, B. Robertson, G. C. Boisset, M. H. Ayliffe, R. Iyer, D. V. Plant, “Design, implementation, and characterization of a hybrid optical interconnect for a four-stage free-space optical backplane demonstrator,” Appl. Opt. 37, 2895–2914 (1998).
    [CrossRef]
  15. K. Hirabayashi, T. Yamamoto, S. Matsuo, S. Hino, “Board-to-board free-space optical interconnections passing through boards for a bookshelf-assembled terabit-per-second-class ATM switch,” Appl. Opt. 37, 2985–2995 (1998).
    [CrossRef]
  16. J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
    [CrossRef] [PubMed]
  17. J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
    [CrossRef]
  18. F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
    [CrossRef]
  19. S. K. Patra, J. Ma, V. H. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).
    [CrossRef]
  20. Y. Li, R. A. Linke, Y.-D. Lyuu, S. Kawai, K. Kubota, K. Kasahara, “Planar-optical mesh-connected tree interconnects: a feasibility study,” Appl. Opt. 34, 1801–1814 (1995).
    [CrossRef] [PubMed]
  21. S. Sinzinger, J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
    [CrossRef] [PubMed]
  22. A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
    [CrossRef]
  23. H. Wada, H. Sasaki, T. Kamijoh, “Wafer bonding technology for optoelectronic integrated devices,” Solid-State Electron. 43, 1655–1663 (1999).
    [CrossRef]
  24. H. Sasaki, I. Fukkuzaki, Y. Katsuki, T. Kamijoh, “Design considerations of stacked multilayers of diffractive optical elements for optical network units in optical subscriber-network applications,” Appl. Opt. 37, 3735–3745 (1998).
    [CrossRef]
  25. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief grating,” J. Opt. Soc. Am. 72, 1383–1392 (1982).
    [CrossRef]
  26. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
    [CrossRef]
  27. D. I. Babi’c, J. J. Dudley, “Double-fused 1.52-µm vertical-cavity lasers,” Appl. Phys. Lett. 66, 1030–1032 (1995).
    [CrossRef]
  28. D. I. Babi’c, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang, K. Carey, “Room-temperature continuous-wave operation of 1.54-mm vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
    [CrossRef]
  29. E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, L. A. Coldren, “Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses,” Appl. Opt. 37, 2811–2821 (1998).
    [CrossRef]
  30. K. Miyamoto, “The phase Fresnel lens,” J. Opt. Soc. Am. 51, 17–20 (1961).
    [CrossRef]
  31. L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
    [CrossRef]
  32. G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
    [CrossRef]
  33. Y. Li, E. Wolf, “Focal shift in focused truncated Gaussian beams,” Opt. Commun. 42, 151–156 (1982).
    [CrossRef]
  34. P. Belland, J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982).
    [CrossRef] [PubMed]
  35. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).
    [CrossRef]
  36. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
    [CrossRef]
  37. A. Yariv, “The propagation of rays and beams,” in Optical Electronics, 3rd ed. (Holt, Rinehart & Winston, New York, 1985).
  38. R. Magnusson, T. K. Gaylord, “Diffraction efficiencies of thin phase gratings with arbitrary grating shape,” J. Opt. Soc. Am. 68, 806–809 (1978).
    [CrossRef]
  39. G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” (Massachusetts Institute of Technology, Cambridge, Mass., 1989).
  40. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” (Massachusetts Institute of Technology, Cambridge, Mass., 1991).
  41. D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).
    [CrossRef]
  42. G. P. Agrawal, Fiber-Optics Communication Systems (Wiley, New York, 1992), Chap. 4.
  43. W. Däschner, P. Long, R. Stein, C. Wu, S. H. Lee, “Cost-effective mass fabrication of multilevel diffractive optical elements by use of a single optical exposure with a gray-scale mask on high-energy beam-sensitive glass,” Appl. Opt. 36, 4675–4680 (1997).
    [CrossRef] [PubMed]
  44. D. Zaleta, S. Patra, V. Ozguz, J. Ma, S. H. Lee, “Tolerancing of board-level-free-space optical interconnects,” Appl. Opt. 35, 1317–1327 (1996).
    [CrossRef] [PubMed]
  45. code v is a registered trademark of Optical Research Associates, 3280 East Foothill Blvd., Pasadena, Calif. 91107.

1999 (1)

H. Wada, H. Sasaki, T. Kamijoh, “Wafer bonding technology for optoelectronic integrated devices,” Solid-State Electron. 43, 1655–1663 (1999).
[CrossRef]

1998 (4)

1997 (3)

1996 (3)

D. Zaleta, S. Patra, V. Ozguz, J. Ma, S. H. Lee, “Tolerancing of board-level-free-space optical interconnects,” Appl. Opt. 35, 1317–1327 (1996).
[CrossRef] [PubMed]

R. T. Chen, F. Li, M. Dubinovsky, O. Ershov, “Si-based surface-relief polygonal gratings for 1-to-many wafer scale optical clock signal distribution,” IEEE Photon. Technol. Lett. 8, 1038–1040 (1996).
[CrossRef]

A. V. Krishnamoorthy, A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996).
[CrossRef]

1995 (3)

Y. Li, R. A. Linke, Y.-D. Lyuu, S. Kawai, K. Kubota, K. Kasahara, “Planar-optical mesh-connected tree interconnects: a feasibility study,” Appl. Opt. 34, 1801–1814 (1995).
[CrossRef] [PubMed]

D. I. Babi’c, J. J. Dudley, “Double-fused 1.52-µm vertical-cavity lasers,” Appl. Phys. Lett. 66, 1030–1032 (1995).
[CrossRef]

D. I. Babi’c, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang, K. Carey, “Room-temperature continuous-wave operation of 1.54-mm vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[CrossRef]

1994 (8)

J. Jahns, F. Sauer, B. Tell, K. F. B.- Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).
[CrossRef]

T. J. Cloonan, “Comparative study of optical and electronic interconnection technologies for large asynchronous transfer mode packet switching applications,” Opt. Eng. 33, 1512–1523 (1994).
[CrossRef]

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” Appl. Opt. 33, 1601–1618 (1994).
[CrossRef] [PubMed]

K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994).
[CrossRef] [PubMed]

L. J. Camp, R. Sharma, M. R. Feldman, “Guided-wave and free-space optical interconnects for parallel-processing systems: a comparison,” Appl. Opt. 33, 6168–6180 (1994).
[CrossRef] [PubMed]

F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

S. K. Patra, J. Ma, V. H. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).
[CrossRef]

D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).
[CrossRef]

1993 (2)

1992 (2)

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).
[CrossRef]

1991 (3)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
[CrossRef]

F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

1989 (3)

1982 (3)

Y. Li, E. Wolf, “Focal shift in focused truncated Gaussian beams,” Opt. Commun. 42, 151–156 (1982).
[CrossRef]

P. Belland, J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982).
[CrossRef] [PubMed]

M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief grating,” J. Opt. Soc. Am. 72, 1383–1392 (1982).
[CrossRef]

1978 (1)

1972 (1)

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

1965 (1)

H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
[CrossRef]

1961 (1)

Acklin, B.

Agrawal, G. P.

G. P. Agrawal, Fiber-Optics Communication Systems (Wiley, New York, 1992), Chap. 4.

Ayliffe, M. H.

Babi’c, D. I.

D. I. Babi’c, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang, K. Carey, “Room-temperature continuous-wave operation of 1.54-mm vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[CrossRef]

D. I. Babi’c, J. J. Dudley, “Double-fused 1.52-µm vertical-cavity lasers,” Appl. Phys. Lett. 66, 1030–1032 (1995).
[CrossRef]

Beckman, M. G.

Belland, P.

Bertilsson, K.

Boisset, G. C.

Bowers, J. E.

D. I. Babi’c, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang, K. Carey, “Room-temperature continuous-wave operation of 1.54-mm vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[CrossRef]

Camp, L. J.

Carey, K.

D. I. Babi’c, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang, K. Carey, “Room-temperature continuous-wave operation of 1.54-mm vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[CrossRef]

Chen, R. T.

R. T. Chen, F. Li, M. Dubinovsky, O. Ershov, “Si-based surface-relief polygonal gratings for 1-to-many wafer scale optical clock signal distribution,” IEEE Photon. Technol. Lett. 8, 1038–1040 (1996).
[CrossRef]

Cloonan, T. J.

T. J. Cloonan, “Comparative study of optical and electronic interconnection technologies for large asynchronous transfer mode packet switching applications,” Opt. Eng. 33, 1512–1523 (1994).
[CrossRef]

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” Appl. Opt. 33, 1601–1618 (1994).
[CrossRef] [PubMed]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).
[CrossRef]

Coldren, L. A.

Crenn, J. P.

Crisci, R. J.

d’Auria, L.

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Däschner, W.

Dubinovsky, M.

R. T. Chen, F. Li, M. Dubinovsky, O. Ershov, “Si-based surface-relief polygonal gratings for 1-to-many wafer scale optical clock signal distribution,” IEEE Photon. Technol. Lett. 8, 1038–1040 (1996).
[CrossRef]

Dudley, J. J.

D. I. Babi’c, J. J. Dudley, “Double-fused 1.52-µm vertical-cavity lasers,” Appl. Phys. Lett. 66, 1030–1032 (1995).
[CrossRef]

Ershov, O.

R. T. Chen, F. Li, M. Dubinovsky, O. Ershov, “Si-based surface-relief polygonal gratings for 1-to-many wafer scale optical clock signal distribution,” IEEE Photon. Technol. Lett. 8, 1038–1040 (1996).
[CrossRef]

Esener, S. C.

F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

Fainman, Y.

Feldblum, A. Y.

J. Jahns, F. Sauer, B. Tell, K. F. B.- Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).
[CrossRef]

F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

Feldman, M. R.

Fink, M.

Florez, L. T.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Fukkuzaki, I.

Gaylord, T. K.

M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief grating,” J. Opt. Soc. Am. 72, 1383–1392 (1982).
[CrossRef]

R. Magnusson, T. K. Gaylord, “Diffraction efficiencies of thin phase gratings with arbitrary grating shape,” J. Opt. Soc. Am. 68, 806–809 (1978).
[CrossRef]

Goebeler, K. F. B.-

J. Jahns, F. Sauer, B. Tell, K. F. B.- Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).
[CrossRef]

Grann, E. B.

Guest, C. C.

Harbison, J. P.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Hino, S.

Hinterlong, S. J.

Hinton, H. S.

Hirabayashi, K.

Hu, E. L.

D. I. Babi’c, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang, K. Carey, “Room-temperature continuous-wave operation of 1.54-mm vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[CrossRef]

Huang, A.

Huignard, J. P.

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Iyer, R.

Jahns, J.

S. Sinzinger, J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
[CrossRef] [PubMed]

J. Jahns, F. Sauer, B. Tell, K. F. B.- Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).
[CrossRef]

F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

J. Jahns, B. Acklin, “Integrated planar optical imaging system with high interconnection density,” Opt. Lett. 18, 1594–1596 (1993).
[CrossRef] [PubMed]

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
[CrossRef] [PubMed]

Jewell, J. L.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Kamijoh, T.

Kasahara, K.

Katsuki, Y.

Kawai, S.

Kiamilev, F. E.

F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
[CrossRef]

Kostuk, R. K.

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996).
[CrossRef]

F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

Kubota, K.

Lee, S. H.

Lee, Y. H.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Lentine, A. L.

Li, F.

R. T. Chen, F. Li, M. Dubinovsky, O. Ershov, “Si-based surface-relief polygonal gratings for 1-to-many wafer scale optical clock signal distribution,” IEEE Photon. Technol. Lett. 8, 1038–1040 (1996).
[CrossRef]

Li, Y.

Linke, R. A.

Liu, Y.

Lohmann, A. W.

A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
[CrossRef]

Long, P.

Louderback, D. A.

Lyuu, Y.-D.

Ma, J.

D. Zaleta, S. Patra, V. Ozguz, J. Ma, S. H. Lee, “Tolerancing of board-level-free-space optical interconnects,” Appl. Opt. 35, 1317–1327 (1996).
[CrossRef] [PubMed]

S. K. Patra, J. Ma, V. H. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).
[CrossRef]

Magnusson, R.

Marchand, P.

K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994).
[CrossRef] [PubMed]

F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

Margalit, N. M.

D. I. Babi’c, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang, K. Carey, “Room-temperature continuous-wave operation of 1.54-mm vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[CrossRef]

Mars, D. E.

D. I. Babi’c, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang, K. Carey, “Room-temperature continuous-wave operation of 1.54-mm vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[CrossRef]

Matsuo, S.

McCormick, F. B.

Miller, A. B.

A. V. Krishnamoorthy, A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996).
[CrossRef]

Mirin, R. P.

D. I. Babi’c, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang, K. Carey, “Room-temperature continuous-wave operation of 1.54-mm vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[CrossRef]

Miyamoto, K.

Moharam, M. G.

D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).
[CrossRef]

M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief grating,” J. Opt. Soc. Am. 72, 1383–1392 (1982).
[CrossRef]

Morgan, R. A.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

Morrison, R. L.

Nguyen, H. N.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

Nijander, C. R.

J. Jahns, F. Sauer, B. Tell, K. F. B.- Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).
[CrossRef]

F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

Novotny, R. A.

Ozguz, V.

Ozguz, V. H.

S. K. Patra, J. Ma, V. H. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).
[CrossRef]

Patra, S.

Patra, S. K.

S. K. Patra, J. Ma, V. H. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).
[CrossRef]

Plant, D. V.

Pommet, D. A.

Robertson, B.

Robertson, W. M.

Roy, A. M.

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Sasaki, H.

Sasian, J. M.

Sauer, F.

F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

J. Jahns, F. Sauer, B. Tell, K. F. B.- Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).
[CrossRef]

Scherer, A.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

Sharma, R.

Sinzinger, S.

Spitz, E.

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

Stein, R.

Streubel, K.

D. I. Babi’c, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang, K. Carey, “Room-temperature continuous-wave operation of 1.54-mm vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[CrossRef]

Strzelecka, E. M.

Swanson, G. J.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” (Massachusetts Institute of Technology, Cambridge, Mass., 1989).

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” (Massachusetts Institute of Technology, Cambridge, Mass., 1991).

Tell, B.

J. Jahns, F. Sauer, B. Tell, K. F. B.- Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).
[CrossRef]

Thibeault, B. J.

Thompson, G. B.

Tooley, F. A. P.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).
[CrossRef]

Townsend, W. P.

F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

J. Jahns, F. Sauer, B. Tell, K. F. B.- Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).
[CrossRef]

Urquhart, K. S.

Veldkamp, W. B.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

Wada, H.

H. Wada, H. Sasaki, T. Kamijoh, “Wafer bonding technology for optoelectronic integrated devices,” Solid-State Electron. 43, 1655–1663 (1999).
[CrossRef]

Walker, J. A.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

Walker, S. J.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

Walker, S. L.

Wojcik, M. J.

Wolf, E.

Y. Li, E. Wolf, “Focal shift in focused truncated Gaussian beams,” Opt. Commun. 42, 151–156 (1982).
[CrossRef]

Wong, Y. M.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

Wu, C.

Yamamoto, T.

Yang, L.

D. I. Babi’c, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang, K. Carey, “Room-temperature continuous-wave operation of 1.54-mm vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[CrossRef]

Yariv, A.

A. Yariv, “The propagation of rays and beams,” in Optical Electronics, 3rd ed. (Holt, Rinehart & Winston, New York, 1985).

Yeh, J.-H.

Zaleta, D.

Appl. Opt. (16)

P. Belland, J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982).
[CrossRef] [PubMed]

M. R. Feldman, C. C. Guest, “Interconnect density capabilities of computer generated holograms for optical interconnection of very large scale integrated circuits,” Appl. Opt. 28, 3134–3137 (1989).
[CrossRef] [PubMed]

R. K. Kostuk, J.-H. Yeh, M. Fink, “Distributed optical data bus for board-level interconnects,” Appl. Opt. 32, 5010–5021 (1993).
[CrossRef] [PubMed]

K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994).
[CrossRef] [PubMed]

L. J. Camp, R. Sharma, M. R. Feldman, “Guided-wave and free-space optical interconnects for parallel-processing systems: a comparison,” Appl. Opt. 33, 6168–6180 (1994).
[CrossRef] [PubMed]

W. Däschner, P. Long, R. Stein, C. Wu, S. H. Lee, “Cost-effective mass fabrication of multilevel diffractive optical elements by use of a single optical exposure with a gray-scale mask on high-energy beam-sensitive glass,” Appl. Opt. 36, 4675–4680 (1997).
[CrossRef] [PubMed]

S. Sinzinger, J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. 36, 4729–4735 (1997).
[CrossRef] [PubMed]

Y. Liu, B. Robertson, G. C. Boisset, M. H. Ayliffe, R. Iyer, D. V. Plant, “Design, implementation, and characterization of a hybrid optical interconnect for a four-stage free-space optical backplane demonstrator,” Appl. Opt. 37, 2895–2914 (1998).
[CrossRef]

Y. Li, R. A. Linke, Y.-D. Lyuu, S. Kawai, K. Kubota, K. Kasahara, “Planar-optical mesh-connected tree interconnects: a feasibility study,” Appl. Opt. 34, 1801–1814 (1995).
[CrossRef] [PubMed]

D. Zaleta, S. Patra, V. Ozguz, J. Ma, S. H. Lee, “Tolerancing of board-level-free-space optical interconnects,” Appl. Opt. 35, 1317–1327 (1996).
[CrossRef] [PubMed]

Y. Liu, B. Robertson, D. V. Plant, H. S. Hinton, W. M. Robertson, “Design and characterization of a microchannel optical interconnect for optical backplanes,” Appl. Opt. 36, 3127–3141 (1997).
[CrossRef] [PubMed]

E. M. Strzelecka, D. A. Louderback, B. J. Thibeault, G. B. Thompson, K. Bertilsson, L. A. Coldren, “Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses,” Appl. Opt. 37, 2811–2821 (1998).
[CrossRef]

K. Hirabayashi, T. Yamamoto, S. Matsuo, S. Hino, “Board-to-board free-space optical interconnections passing through boards for a bookshelf-assembled terabit-per-second-class ATM switch,” Appl. Opt. 37, 2985–2995 (1998).
[CrossRef]

H. Sasaki, I. Fukkuzaki, Y. Katsuki, T. Kamijoh, “Design considerations of stacked multilayers of diffractive optical elements for optical network units in optical subscriber-network applications,” Appl. Opt. 37, 3735–3745 (1998).
[CrossRef]

J. Jahns, A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989).
[CrossRef] [PubMed]

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,” Appl. Opt. 33, 1601–1618 (1994).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

D. I. Babi’c, J. J. Dudley, “Double-fused 1.52-µm vertical-cavity lasers,” Appl. Phys. Lett. 66, 1030–1032 (1995).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. V. Krishnamoorthy, A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

R. T. Chen, F. Li, M. Dubinovsky, O. Ershov, “Si-based surface-relief polygonal gratings for 1-to-many wafer scale optical clock signal distribution,” IEEE Photon. Technol. Lett. 8, 1038–1040 (1996).
[CrossRef]

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications,” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
[CrossRef]

D. I. Babi’c, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang, K. Carey, “Room-temperature continuous-wave operation of 1.54-mm vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995).
[CrossRef]

J. Lightwave Technol. (1)

F. E. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

Opt. Commun. (4)

Y. Li, E. Wolf, “Focal shift in focused truncated Gaussian beams,” Opt. Commun. 42, 151–156 (1982).
[CrossRef]

A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
[CrossRef]

L. d’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972).
[CrossRef]

J. Jahns, F. Sauer, B. Tell, K. F. B.- Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).
[CrossRef]

Opt. Eng. (4)

T. J. Cloonan, “Comparative study of optical and electronic interconnection technologies for large asynchronous transfer mode packet switching applications,” Opt. Eng. 33, 1512–1523 (1994).
[CrossRef]

F. Sauer, J. Jahns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
[CrossRef]

S. K. Patra, J. Ma, V. H. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).
[CrossRef]

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).
[CrossRef]

Solid-State Electron. (1)

H. Wada, H. Sasaki, T. Kamijoh, “Wafer bonding technology for optoelectronic integrated devices,” Solid-State Electron. 43, 1655–1663 (1999).
[CrossRef]

Other (6)

The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, 181 Metro Drive, Suite 450, San Jose, Calif. 95110 (1997), http://www.semichips.org/index.htm .

A. Yariv, “The propagation of rays and beams,” in Optical Electronics, 3rd ed. (Holt, Rinehart & Winston, New York, 1985).

G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements,” (Massachusetts Institute of Technology, Cambridge, Mass., 1989).

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” (Massachusetts Institute of Technology, Cambridge, Mass., 1991).

G. P. Agrawal, Fiber-Optics Communication Systems (Wiley, New York, 1992), Chap. 4.

code v is a registered trademark of Optical Research Associates, 3280 East Foothill Blvd., Pasadena, Calif. 91107.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Free-space optical interconnection implemented in (a) a fully parallel stacked configuration and (b) a diffractive optical element-based zigzag configuration. OEIC, optoelectronic integrated circuit; DOE, diffractive optical element; SLD, surface-emitting laser diode.

Fig. 2
Fig. 2

Free-space optical interconnection implemented in (a) a hybrid optical system and (b) the corresponding planar-optics-based photonic circuit in which the light beam propagates in a zigzag manner with a slanted angle θ. T, optical substrate thickness; L, interconnection length.

Fig. 3
Fig. 3

Schematic diagram of a silicon back-surface collimator. SLD, surface-emitting laser diode.

Fig. 4
Fig. 4

Silicon substrate thickness requirement in terms of the beam-waist radius ω2 for various values of the light source beam waist ω1.

Fig. 5
Fig. 5

Minimum feature size PLD of the silicon back-surface collimator as a function of the radius of the beam waist, ω2, for various values of the light source beam-waist radius ω1.

Fig. 6
Fig. 6

Minimum feature sizes of the binary linear grating for various values of the optical substrate thickness T and the interconnection length L. The number of reflections of the beam between the incident linear grating and the first relay lens is assumed to be B = 2.

Fig. 7
Fig. 7

Schematic diagram describing the number of free-space optical interconnections along the x axis, D, limited by the zigzag propagating geometry and the total number of interconnections Dcm per unit centimeter along the periphery of the silicon substrate.

Fig. 8
Fig. 8

Maximum number of channels, D, and the total width of channels of the free-space optical interconnections along the x axis in the targeted planar-based photonic circuit. The following parameters are assumed for the calculations: interconnection length L = 40 mm, optical substrate thickness T = 3 mm, and the number of beam reflections between the incident linear grating and the first relay lens is B = 2.

Fig. 9
Fig. 9

Linear channel density Dcm along the chip periphery of the free-space optical interconnection as a function of the beam-waist radius ω2. The following parameters are assumed for the calculations: interconnection length L = 40 mm, optical substrate thickness T = 3 mm, and the number of beam reflections between the incident linear grating and the first relay lens is B = 2.

Fig. 10
Fig. 10

Schematic diagram explaining lens partitioning for the imaging of rectangular grid objects. (a) The single-lens imaging configuration requires smaller values of the minimum feature sizes than in (b) in which both objects and imaging lenses are partitioned into subfields.

Fig. 11
Fig. 11

Minimum feature size requirement at the edge of the relay lenses with eight phase levels. The following parameters are assumed for the calculations: interconnection length L = 40 mm, optical substrate thickness T = 3 mm, and the number of beam reflections between the incident linear grating and the first relay lens is B = 2.

Fig. 12
Fig. 12

Flow chart of the photonic circuit design procedure.

Fig. 13
Fig. 13

(a) Fabricated photonic circuit for interchip free-space optical interconnections and (b) scanning electron microscope picture of the input linear grating.

Fig. 14
Fig. 14

Schematic diagram of the experimental setup to evaluate the imaging capabilities of the fabricated photonic circuit for interchip free-space optical interconnections. After the photonic circuit was propagated, the collimated beam generated by a fiber collimator is focused by a silicon back-surface collimator array. The focused spot was measured by a beam profiler.

Fig. 15
Fig. 15

Focused spot profiles on the silicon substrate (a) on axis located at (x, y) = (0 mm, 0 mm) and (b) off axis located at (x, y) = (-1 mm, 1 mm) by a silicon back-surface collimator array.

Fig. 16
Fig. 16

Diffraction efficiency of reflection-type blazed linear gratings as a function of the grating period. The grating etch depth is twice the depth of a conventional reflection-type grating, acting as a double-path element.

Fig. 17
Fig. 17

Schematic diagram explaining the three different photonic circuits considered for a free-space optical interconnection of a 40-mm length and a 3-mm substrate thickness. Type I is a fabricated photonic circuit in which optical beams propagate at an angle of θ = 39.8°, and the number of reflections between the incident linear grating and the first relay lens is B = 2. In type II the number of beam reflections is doubled to B = 4, leading to a propagation angle of θ = 19.9°. In type III two sets of 4-f imaging systems are cascaded to image two-dimensional optical interconnection beams with a propagation angle of θ = 39.8°.

Fig. 18
Fig. 18

Calculated results of the lateral displacement Δx at the exit linear grating when the original light source is located offset (450 µm, 450 µm) from the optical axis for various values of lasing wavelengths for the three different photonic circuits.

Fig. 19
Fig. 19

Calculated results of the lateral displacement Δx at the exit linear grating whose original light source is located offset (450 µm, 450 µm) from the optical axis for various values of propagating substrate thicknesses for the three different photonic circuits.

Fig. 20
Fig. 20

Calculation results of the lateral displacement Δx at the exit linear grating whose original light source is located offset (450 µm, 450 µm) from the optical axis for various values of optical substrate parallelisms for the three different photonic circuits.

Tables (1)

Tables Icon

Table 1 Theoretical Predictions of Insertion Losses of the Prototype Photonic Circuit

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

PLD=λNLD1+f2ω021/2.
f=πω1ω2λω22-ω12ω2ω02-ω121/2-ω1ω02-ω22,
ω0=ω11+λz1πω12n121/2,
ω0=ω21+λz2πω22n221/2,
Plinear=λNlinearn31-11+tan2θ1/2,
B=L8T tanθ.
LB-1=2TB-1cos θ,
LB=2TBcos θ,
ωB-1=ω21+λ2LB-12n32π2ω24 cos4 θ1/2,
ωB=ω21+λ2LB2n32π2ω24 cos4 θ1/2.
LB-14B+4ω2D-12+2ωB-1L4-4ω2D-12-2ωB  DL16Bω2-ωB2ω2-ωB-12ω2+1.
Dcm=D400ω2,
PRelay=2λNRelayn3X-x2+y2X-x2+y2+Z2+2 X-xsin θX-x2+y2+Z21/2+sin2 θ1/2,
X=-2TB tan θ, Z=-2TB.
Pdet=μhcfBWληq,
ω02=ω121+λz1πω12n12,
ω2=ω02-ω04-4 z22λ2n22π21/221/2, ω2=ω02+ω04-4 z22λ2n22π21/221/2.
f=πω1ω2λω22-ω12ω2ω02-ω121/2-ω1ω02-ω221/2.
ρx, y=x2+y2+f21/2-f.
2ρx, yx2=y2+f2x2+y2+f23/2>0,2ρx, yy2=x2+f2x2+y2+f23/2>0,
P=λN|grad ρx, y|,
P=λNx2+y2x2+y2+f21/2.

Metrics