Abstract

We demonstrate that holographic information can be stored in Eu3+-doped alkali aluminosilicate glasses. The holograms were developed by a two-beam mixing configuration with a write-beam wavelength (465.8 nm) corresponding to the 7F05D0 transition of the Eu3+ ions. The images were reconstructed either with the wavelength used to record them or with wavelengths below this transition (543.5 and 632.8 nm). We stored clear holographic images using a total writing power of 5 mW and an exposure time of 20 s. In addition, clear holograms were recorded with an exposure time of 200 ms when 100 mW of the writing power was used. The exposure time and the writing power required to obtain clear holographic images are dependent on the Eu3+ concentration.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Staebler, “Ferroelectric crystals,” in Holographic Recording Materials, Vol. 20 of Topics in Applied Physics, H. M. Smith, ed. (Springer-Verlag, New York, 1977), p. 101.
    [CrossRef]
  2. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
    [CrossRef] [PubMed]
  3. F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, D. A. Gregry, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991).
    [CrossRef]
  4. H. Yoshinaga, K. Kitayama, H. Oguri, “Holographic image storage in iron-doped lithium niobate fibers,” Appl. Phys. Lett. 56, 1728–1730 (1990).
    [CrossRef]
  5. X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, R. Kachru, “Time-domain holographic digital memory,” Science 278, 96–100 (1997).
    [CrossRef]
  6. E. G. Behrens, R. C. Powell, D. H. Blackburn, “Optical applications of laser-induced gratings in Eu-doped glasses,” Appl. Opt. 29, 1619–1624 (1990).
    [CrossRef] [PubMed]
  7. A. Y. Hamad, J. P. Wicksted, G. S. Dixon, “The effect of write-beam wavelength on the grating formation in Eu3+-doped alkali silicate glass,” Opt. Mater. 12, 41–45 (1999).
    [CrossRef]
  8. F. M. Durville, E. G. Behrens, R. C. Powell, “Laser-induced refractive-index gratings in Eu-doped glasses,” Phys. Rev. B 34, 4213–4220 (1986).
    [CrossRef]
  9. R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-wave mixing and fluorescence line narrowing studies of Eu3+ ions in glasses,” J. Lumin. 40–41, 68–71 (1988).
  10. E. G. Behrens, F. M. Durville, R. C. Powell, “Properties of laser-induced gratings in Eu-doped glasses,” Phys. Rev. B 39, 6076–6081 (1989).
    [CrossRef]
  11. E. G. Behrens, R. C. Powell, D. H. Blackburn, “Characteristics of laser-induced gratings in Pr3+ and Eu3+-doped silicate glasses,” J. Opt. Soc. Am. B 7, 1437–1444 (1990).
    [CrossRef]
  12. A. Y. Hamad, J. P. Wicksted, G. S. Dixon, L. P. deRochemont, “Laser-induced transient and permanent gratings in Eu3+-doped dual alkaline earth silicate glasses,” J. Non-Cryst. Solids 241, 59–70 (1998).
    [CrossRef]
  13. G. S. Dixon, A. Y. Hamad, J. P. Wicksted, “Kinetics of holographic refractive-index gratings in rare-earth-sensitized glasses,” Phys. Rev. B 58, 200–205 (1998).
    [CrossRef]
  14. A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
    [CrossRef]
  15. A. Y. Hamad, J. P. Wicksted, “Volume grating produced by intersecting Gaussian beams in an absorbing medium: a Bragg diffraction model,” Opt. Commun. 138, 354–364 (1997).
    [CrossRef]
  16. A. M. Glass, D. Von der Linde, T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in lithium niobate,” Appl. Phys. Lett. 25, 233–235 (1974).
    [CrossRef]
  17. J. Hong, “Applications of photorefractive crystals for optical neural networks,” Opt. Quantum Electron. 25, 511–568 (1993).
    [CrossRef]
  18. T. Y. Chang, J. H. Hong, F. Vachss, R. McGraw, “Studies of the dynamic range of photorefractive gratings in ferroelectric crystals,” J. Opt. Soc. Am. B 9, 1744–1751 (1992).
    [CrossRef]
  19. M. Austin, “The dependence of image quality of holographic real images on the reconstruction geometry,” J. Phys. D 17, 1953–1959 (1984).
    [CrossRef]
  20. L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford U. Press, New York, 1996), p. 372. Also, see the references related to the topic mentioned on page 372.
  21. L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
    [CrossRef]

1999 (1)

A. Y. Hamad, J. P. Wicksted, G. S. Dixon, “The effect of write-beam wavelength on the grating formation in Eu3+-doped alkali silicate glass,” Opt. Mater. 12, 41–45 (1999).
[CrossRef]

1998 (3)

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

A. Y. Hamad, J. P. Wicksted, G. S. Dixon, L. P. deRochemont, “Laser-induced transient and permanent gratings in Eu3+-doped dual alkaline earth silicate glasses,” J. Non-Cryst. Solids 241, 59–70 (1998).
[CrossRef]

G. S. Dixon, A. Y. Hamad, J. P. Wicksted, “Kinetics of holographic refractive-index gratings in rare-earth-sensitized glasses,” Phys. Rev. B 58, 200–205 (1998).
[CrossRef]

1997 (2)

A. Y. Hamad, J. P. Wicksted, “Volume grating produced by intersecting Gaussian beams in an absorbing medium: a Bragg diffraction model,” Opt. Commun. 138, 354–364 (1997).
[CrossRef]

X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, R. Kachru, “Time-domain holographic digital memory,” Science 278, 96–100 (1997).
[CrossRef]

1994 (1)

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

1993 (2)

J. Hong, “Applications of photorefractive crystals for optical neural networks,” Opt. Quantum Electron. 25, 511–568 (1993).
[CrossRef]

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

1992 (1)

1991 (1)

F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, D. A. Gregry, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991).
[CrossRef]

1990 (3)

1989 (1)

E. G. Behrens, F. M. Durville, R. C. Powell, “Properties of laser-induced gratings in Eu-doped glasses,” Phys. Rev. B 39, 6076–6081 (1989).
[CrossRef]

1988 (1)

R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-wave mixing and fluorescence line narrowing studies of Eu3+ ions in glasses,” J. Lumin. 40–41, 68–71 (1988).

1986 (1)

F. M. Durville, E. G. Behrens, R. C. Powell, “Laser-induced refractive-index gratings in Eu-doped glasses,” Phys. Rev. B 34, 4213–4220 (1986).
[CrossRef]

1984 (1)

M. Austin, “The dependence of image quality of holographic real images on the reconstruction geometry,” J. Phys. D 17, 1953–1959 (1984).
[CrossRef]

1974 (1)

A. M. Glass, D. Von der Linde, T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in lithium niobate,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Akella, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Austin, M.

M. Austin, “The dependence of image quality of holographic real images on the reconstruction geometry,” J. Phys. D 17, 1953–1959 (1984).
[CrossRef]

Bashaw, M. C.

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

Behrens, E. G.

E. G. Behrens, R. C. Powell, D. H. Blackburn, “Characteristics of laser-induced gratings in Pr3+ and Eu3+-doped silicate glasses,” J. Opt. Soc. Am. B 7, 1437–1444 (1990).
[CrossRef]

E. G. Behrens, R. C. Powell, D. H. Blackburn, “Optical applications of laser-induced gratings in Eu-doped glasses,” Appl. Opt. 29, 1619–1624 (1990).
[CrossRef] [PubMed]

E. G. Behrens, F. M. Durville, R. C. Powell, “Properties of laser-induced gratings in Eu-doped glasses,” Phys. Rev. B 39, 6076–6081 (1989).
[CrossRef]

R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-wave mixing and fluorescence line narrowing studies of Eu3+ ions in glasses,” J. Lumin. 40–41, 68–71 (1988).

F. M. Durville, E. G. Behrens, R. C. Powell, “Laser-induced refractive-index gratings in Eu-doped glasses,” Phys. Rev. B 34, 4213–4220 (1986).
[CrossRef]

Blackburn, D. H.

Chang, T. Y.

deRochemont, L. P.

A. Y. Hamad, J. P. Wicksted, G. S. Dixon, L. P. deRochemont, “Laser-induced transient and permanent gratings in Eu3+-doped dual alkaline earth silicate glasses,” J. Non-Cryst. Solids 241, 59–70 (1998).
[CrossRef]

Dixon, G. S.

A. Y. Hamad, J. P. Wicksted, G. S. Dixon, “The effect of write-beam wavelength on the grating formation in Eu3+-doped alkali silicate glass,” Opt. Mater. 12, 41–45 (1999).
[CrossRef]

G. S. Dixon, A. Y. Hamad, J. P. Wicksted, “Kinetics of holographic refractive-index gratings in rare-earth-sensitized glasses,” Phys. Rev. B 58, 200–205 (1998).
[CrossRef]

A. Y. Hamad, J. P. Wicksted, G. S. Dixon, L. P. deRochemont, “Laser-induced transient and permanent gratings in Eu3+-doped dual alkaline earth silicate glasses,” J. Non-Cryst. Solids 241, 59–70 (1998).
[CrossRef]

R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-wave mixing and fluorescence line narrowing studies of Eu3+ ions in glasses,” J. Lumin. 40–41, 68–71 (1988).

Durville, F. M.

E. G. Behrens, F. M. Durville, R. C. Powell, “Properties of laser-induced gratings in Eu-doped glasses,” Phys. Rev. B 39, 6076–6081 (1989).
[CrossRef]

R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-wave mixing and fluorescence line narrowing studies of Eu3+ ions in glasses,” J. Lumin. 40–41, 68–71 (1988).

F. M. Durville, E. G. Behrens, R. C. Powell, “Laser-induced refractive-index gratings in Eu-doped glasses,” Phys. Rev. B 34, 4213–4220 (1986).
[CrossRef]

Erdogan, T.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

Fleming, J. W.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

Glass, A. M.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

A. M. Glass, D. Von der Linde, T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in lithium niobate,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Gregry, D. A.

F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, D. A. Gregry, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991).
[CrossRef]

Grunnet-Jepsen, A.

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford U. Press, New York, 1996), p. 372. Also, see the references related to the topic mentioned on page 372.

Hamad, A. Y.

A. Y. Hamad, J. P. Wicksted, G. S. Dixon, “The effect of write-beam wavelength on the grating formation in Eu3+-doped alkali silicate glass,” Opt. Mater. 12, 41–45 (1999).
[CrossRef]

G. S. Dixon, A. Y. Hamad, J. P. Wicksted, “Kinetics of holographic refractive-index gratings in rare-earth-sensitized glasses,” Phys. Rev. B 58, 200–205 (1998).
[CrossRef]

A. Y. Hamad, J. P. Wicksted, G. S. Dixon, L. P. deRochemont, “Laser-induced transient and permanent gratings in Eu3+-doped dual alkaline earth silicate glasses,” J. Non-Cryst. Solids 241, 59–70 (1998).
[CrossRef]

A. Y. Hamad, J. P. Wicksted, “Volume grating produced by intersecting Gaussian beams in an absorbing medium: a Bragg diffraction model,” Opt. Commun. 138, 354–364 (1997).
[CrossRef]

Hesselink, L.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

Hong, J.

J. Hong, “Applications of photorefractive crystals for optical neural networks,” Opt. Quantum Electron. 25, 511–568 (1993).
[CrossRef]

Hong, J. H.

Huestis, D. L.

X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, R. Kachru, “Time-domain holographic digital memory,” Science 278, 96–100 (1997).
[CrossRef]

Kachru, R.

X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, R. Kachru, “Time-domain holographic digital memory,” Science 278, 96–100 (1997).
[CrossRef]

Kitayama, K.

H. Yoshinaga, K. Kitayama, H. Oguri, “Holographic image storage in iron-doped lithium niobate fibers,” Appl. Phys. Lett. 56, 1728–1730 (1990).
[CrossRef]

Lande, D.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Lemaire, P. J.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

Liu, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Mayers, A.

F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, D. A. Gregry, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991).
[CrossRef]

McGraw, R.

Mizrahi, V.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

Negran, T. J.

A. M. Glass, D. Von der Linde, T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in lithium niobate,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Neurgaonkar, R. R.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Nguyen, A.

X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, R. Kachru, “Time-domain holographic digital memory,” Science 278, 96–100 (1997).
[CrossRef]

Oguri, H.

H. Yoshinaga, K. Kitayama, H. Oguri, “Holographic image storage in iron-doped lithium niobate fibers,” Appl. Phys. Lett. 56, 1728–1730 (1990).
[CrossRef]

Orlov, S. S.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Partovi, A.

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

Perry, J. W.

X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, R. Kachru, “Time-domain holographic digital memory,” Science 278, 96–100 (1997).
[CrossRef]

Powell, R. C.

E. G. Behrens, R. C. Powell, D. H. Blackburn, “Optical applications of laser-induced gratings in Eu-doped glasses,” Appl. Opt. 29, 1619–1624 (1990).
[CrossRef] [PubMed]

E. G. Behrens, R. C. Powell, D. H. Blackburn, “Characteristics of laser-induced gratings in Pr3+ and Eu3+-doped silicate glasses,” J. Opt. Soc. Am. B 7, 1437–1444 (1990).
[CrossRef]

E. G. Behrens, F. M. Durville, R. C. Powell, “Properties of laser-induced gratings in Eu-doped glasses,” Phys. Rev. B 39, 6076–6081 (1989).
[CrossRef]

R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-wave mixing and fluorescence line narrowing studies of Eu3+ ions in glasses,” J. Lumin. 40–41, 68–71 (1988).

F. M. Durville, E. G. Behrens, R. C. Powell, “Laser-induced refractive-index gratings in Eu-doped glasses,” Phys. Rev. B 34, 4213–4220 (1986).
[CrossRef]

Rajan, S.

F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, D. A. Gregry, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991).
[CrossRef]

Shen, X. A.

X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, R. Kachru, “Time-domain holographic digital memory,” Science 278, 96–100 (1997).
[CrossRef]

Solymar, L.

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford U. Press, New York, 1996), p. 372. Also, see the references related to the topic mentioned on page 372.

Staebler, D. L.

D. L. Staebler, “Ferroelectric crystals,” in Holographic Recording Materials, Vol. 20 of Topics in Applied Physics, H. M. Smith, ed. (Springer-Verlag, New York, 1977), p. 101.
[CrossRef]

Vachss, F.

Von der Linde, D.

A. M. Glass, D. Von der Linde, T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in lithium niobate,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

Webb, D. J.

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford U. Press, New York, 1996), p. 372. Also, see the references related to the topic mentioned on page 372.

Wicksted, J. P.

A. Y. Hamad, J. P. Wicksted, G. S. Dixon, “The effect of write-beam wavelength on the grating formation in Eu3+-doped alkali silicate glass,” Opt. Mater. 12, 41–45 (1999).
[CrossRef]

A. Y. Hamad, J. P. Wicksted, G. S. Dixon, L. P. deRochemont, “Laser-induced transient and permanent gratings in Eu3+-doped dual alkaline earth silicate glasses,” J. Non-Cryst. Solids 241, 59–70 (1998).
[CrossRef]

G. S. Dixon, A. Y. Hamad, J. P. Wicksted, “Kinetics of holographic refractive-index gratings in rare-earth-sensitized glasses,” Phys. Rev. B 58, 200–205 (1998).
[CrossRef]

A. Y. Hamad, J. P. Wicksted, “Volume grating produced by intersecting Gaussian beams in an absorbing medium: a Bragg diffraction model,” Opt. Commun. 138, 354–364 (1997).
[CrossRef]

Wu, S.

F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, D. A. Gregry, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991).
[CrossRef]

Yoshinaga, H.

H. Yoshinaga, K. Kitayama, H. Oguri, “Holographic image storage in iron-doped lithium niobate fibers,” Appl. Phys. Lett. 56, 1728–1730 (1990).
[CrossRef]

Yu, F. T. S.

F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, D. A. Gregry, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. Yoshinaga, K. Kitayama, H. Oguri, “Holographic image storage in iron-doped lithium niobate fibers,” Appl. Phys. Lett. 56, 1728–1730 (1990).
[CrossRef]

A. Partovi, T. Erdogan, V. Mizrahi, P. J. Lemaire, A. M. Glass, J. W. Fleming, “Volume holographic storage in hydrogen treated germano-silicate glass,” Appl. Phys. Lett. 64, 821–823 (1994).
[CrossRef]

A. M. Glass, D. Von der Linde, T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in lithium niobate,” Appl. Phys. Lett. 25, 233–235 (1974).
[CrossRef]

J. Lumin. (1)

R. C. Powell, F. M. Durville, E. G. Behrens, G. S. Dixon, “Four-wave mixing and fluorescence line narrowing studies of Eu3+ ions in glasses,” J. Lumin. 40–41, 68–71 (1988).

J. Non-Cryst. Solids (1)

A. Y. Hamad, J. P. Wicksted, G. S. Dixon, L. P. deRochemont, “Laser-induced transient and permanent gratings in Eu3+-doped dual alkaline earth silicate glasses,” J. Non-Cryst. Solids 241, 59–70 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

M. Austin, “The dependence of image quality of holographic real images on the reconstruction geometry,” J. Phys. D 17, 1953–1959 (1984).
[CrossRef]

Opt. Commun. (2)

F. T. S. Yu, S. Wu, A. Mayers, S. Rajan, D. A. Gregry, “Color holographic storage in LiNbO3,” Opt. Commun. 81, 348–352 (1991).
[CrossRef]

A. Y. Hamad, J. P. Wicksted, “Volume grating produced by intersecting Gaussian beams in an absorbing medium: a Bragg diffraction model,” Opt. Commun. 138, 354–364 (1997).
[CrossRef]

Opt. Mater. (1)

A. Y. Hamad, J. P. Wicksted, G. S. Dixon, “The effect of write-beam wavelength on the grating formation in Eu3+-doped alkali silicate glass,” Opt. Mater. 12, 41–45 (1999).
[CrossRef]

Opt. Quantum Electron. (2)

J. Hong, “Applications of photorefractive crystals for optical neural networks,” Opt. Quantum Electron. 25, 511–568 (1993).
[CrossRef]

L. Hesselink, M. C. Bashaw, “Optical memories implemented with photorefractive media,” Opt. Quantum Electron. 25, 611–661 (1993).
[CrossRef]

Phys. Rev. B (3)

G. S. Dixon, A. Y. Hamad, J. P. Wicksted, “Kinetics of holographic refractive-index gratings in rare-earth-sensitized glasses,” Phys. Rev. B 58, 200–205 (1998).
[CrossRef]

F. M. Durville, E. G. Behrens, R. C. Powell, “Laser-induced refractive-index gratings in Eu-doped glasses,” Phys. Rev. B 34, 4213–4220 (1986).
[CrossRef]

E. G. Behrens, F. M. Durville, R. C. Powell, “Properties of laser-induced gratings in Eu-doped glasses,” Phys. Rev. B 39, 6076–6081 (1989).
[CrossRef]

Science (2)

X. A. Shen, A. Nguyen, J. W. Perry, D. L. Huestis, R. Kachru, “Time-domain holographic digital memory,” Science 278, 96–100 (1997).
[CrossRef]

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Other (2)

D. L. Staebler, “Ferroelectric crystals,” in Holographic Recording Materials, Vol. 20 of Topics in Applied Physics, H. M. Smith, ed. (Springer-Verlag, New York, 1977), p. 101.
[CrossRef]

L. Solymar, D. J. Webb, A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford U. Press, New York, 1996), p. 372. Also, see the references related to the topic mentioned on page 372.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup used to obtain the data. M, mirror; BS, beam splitter; BE, beam expander.

Fig. 2
Fig. 2

Holographic images stored in the Eu5 sample: (a) happy face, (b) airplane, (c) ARO (Army Research Office), (d) chess piece, (e) horizontal lines, and (f) thumbs up.

Fig. 3
Fig. 3

(a) Original image. (b), (c), and (d) The reconstructed images by use of λr = 465.8, 543.5, and 632.8 nm, respectively. All images were recorded with λw = 465.8 nm. See text for the rest of the parameters.

Fig. 4
Fig. 4

Dark decay of the persistent grating. The inset is a semilog plot of the normalized diffracted power as a function of time for the slow decay. The solid line is least-squares fit to the data.

Fig. 5
Fig. 5

(a) Exposure time versus write-beam power by use of Eu5. (b) Reconstructed image recorded in Eu7.5 with texp = 200 ms, Pw = 100 mW, and λw = λr = 465.8 nm.

Fig. 6
Fig. 6

Log–log plot of the induced change in the index of refraction as a function of the write-beam power ratio. The solid curve is a guide to the eye.

Fig. 7
Fig. 7

Reconstructed images stored in (a) Eu1.25 sample with texp = 120 s, (b) Eu2.5 sample with texp = 10 s, (c) Eu5 sample with texp = 2 s, and (d) Eu7.5 sample with texp = 1 s. All images were recorded and reconstructed with Pw = 50 mW, Pr = 2.5 mW, and λr = 465.8 nm.

Fig. 8
Fig. 8

Results of the associative recording holograms. (a) Experimental setup in which 1 is the reference beam and 2 indicates the object beam. (b) The OSU image as read by the reference beam. (c) The slit image as read by the object beam.

Tables (1)

Tables Icon

Table 1 Some of the Linear Parameters for the Samples Used in this Studya

Metrics