Abstract

Consideration is given to the action of azo-dye temperature on Weigert’s effect. Azo-dye-colored gelatin emulsions, on heating, have been found to show an increase both in the anisotropy photoinduction rate and in the magnitude of saturation anisotropy.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kondo, “Über den Photoanisotropen Effect (Weigerteffect) an Farbenstoffen. I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).
  2. A. Teitel, “Über ein besondere mechanische Wirkung des polarisierten Lichts,” Naturwissenschaften 44, 370–371 (1957).
    [CrossRef]
  3. A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I,” Opt. Spectrosc. (USSR) 31, 557–564 (1971).
  4. A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of complex organic compounds in viscous solitions. II,” Opt. Spectrosc. (USSR), 31, 741–748 (1971).
  5. T. Todorov, L. Nikolova, N. Tomova, “Polarization holography. 1. A new high-efficiency organic material with reversible photo-induced birefringence,” Appl. Opt. 23, 4309–4312 (1994).
    [CrossRef]
  6. S. Calixto, R. A. Lessard, “Real-time polarizing optical image processing with dyed plastic,” Appl. Opt. 24, 773–776 (1985).
    [CrossRef] [PubMed]
  7. T. D. Ebralidze, A. N. Mumladze, “Light-induced anisotropy in aso-dye-colored materials,” Appl. Opt. 29, 446–447 (1990).
    [CrossRef] [PubMed]
  8. T. D. Ebralidze, N. A. Ebralidze, A. N. Mumladze, “Photoinduction of anisotropic grains in organic compounds,” Appl. Opt. 37, 6161–6163 (1998).
    [CrossRef]
  9. A. A. Chernov, E. I. Givargizov, Modern Crystallography (Nauka, Moscow, 1980), vol. 3.

1998 (1)

1994 (1)

1990 (1)

1985 (1)

1971 (2)

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I,” Opt. Spectrosc. (USSR) 31, 557–564 (1971).

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of complex organic compounds in viscous solitions. II,” Opt. Spectrosc. (USSR), 31, 741–748 (1971).

1957 (1)

A. Teitel, “Über ein besondere mechanische Wirkung des polarisierten Lichts,” Naturwissenschaften 44, 370–371 (1957).
[CrossRef]

1932 (1)

T. Kondo, “Über den Photoanisotropen Effect (Weigerteffect) an Farbenstoffen. I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).

Calixto, S.

Chernov, A. A.

A. A. Chernov, E. I. Givargizov, Modern Crystallography (Nauka, Moscow, 1980), vol. 3.

Ebralidze, N. A.

Ebralidze, T. D.

Givargizov, E. I.

A. A. Chernov, E. I. Givargizov, Modern Crystallography (Nauka, Moscow, 1980), vol. 3.

Kondo, T.

T. Kondo, “Über den Photoanisotropen Effect (Weigerteffect) an Farbenstoffen. I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).

Lessard, R. A.

Makushenko, A. M.

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I,” Opt. Spectrosc. (USSR) 31, 557–564 (1971).

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of complex organic compounds in viscous solitions. II,” Opt. Spectrosc. (USSR), 31, 741–748 (1971).

Mumladze, A. N.

Neporent, B. S.

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of complex organic compounds in viscous solitions. II,” Opt. Spectrosc. (USSR), 31, 741–748 (1971).

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I,” Opt. Spectrosc. (USSR) 31, 557–564 (1971).

Nikolova, L.

Stolbova, O. V.

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I,” Opt. Spectrosc. (USSR) 31, 557–564 (1971).

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of complex organic compounds in viscous solitions. II,” Opt. Spectrosc. (USSR), 31, 741–748 (1971).

Teitel, A.

A. Teitel, “Über ein besondere mechanische Wirkung des polarisierten Lichts,” Naturwissenschaften 44, 370–371 (1957).
[CrossRef]

Todorov, T.

Tomova, N.

Appl. Opt. (4)

Naturwissenschaften (1)

A. Teitel, “Über ein besondere mechanische Wirkung des polarisierten Lichts,” Naturwissenschaften 44, 370–371 (1957).
[CrossRef]

Opt. Spectrosc. (USSR) (2)

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of aromatic azo compounds. I,” Opt. Spectrosc. (USSR) 31, 557–564 (1971).

A. M. Makushenko, B. S. Neporent, O. V. Stolbova, “Reversible orientational photodichroism and photoisomerization of complex organic compounds in viscous solitions. II,” Opt. Spectrosc. (USSR), 31, 741–748 (1971).

Z. Wiss. Photogr. Photophys. Photochem. (1)

T. Kondo, “Über den Photoanisotropen Effect (Weigerteffect) an Farbenstoffen. I,” Z. Wiss. Photogr. Photophys. Photochem. 31, 153–167 (1932).

Other (1)

A. A. Chernov, E. I. Givargizov, Modern Crystallography (Nauka, Moscow, 1980), vol. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical arrangement for carrying out anisotropy photoinduction observations: 1, argon laser; 2, photosensitive plate; 3, He–Ne laser; 4, polarizer; 5, photodetector.

Fig. 2
Fig. 2

Magnitude of photoinduced anisotropy dependence on exposure time. 1 corresponds to plate temperature T0 = 8 °C, and 2 corresponds to plate temperature T = 48 °C.

Fig. 3
Fig. 3

Magnitude of photoinduced anisotropy dependence on exposure time observed in the process of heating the plate and the subsequent cooling of the plate. t1 corresponds to the point in time at which the argon laser is switched on, and t2 corresponds to the point in time at which the cooling-down process is initiated.

Metrics