Abstract

A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 µm; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 µm.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Barnoski, S. M. Jensen, “Fiber waveguides: a novel technique for investigating attenuation characteristics,” Appl. Opt. 15, 2112–2115 (1976).
    [CrossRef] [PubMed]
  2. B. L. Danielson, “Optical time-domain reflectometer specifications and performance testing,” Appl. Opt. 24, 2313–2322 (1985).
    [CrossRef] [PubMed]
  3. H. Barfuss, E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution,” J. Lightwave Technol. 7, 3–10 (1989).
    [CrossRef]
  4. U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
    [CrossRef]
  5. J. Nakayama, K. Iizuka, J. Nielsen, “Optical fiber fault locator by the step frequency method,” Appl. Opt. 26, 440–443 (1987).
    [CrossRef] [PubMed]
  6. K. Iizuka, Y. Imai, A. P. Freundorfer, R. James, R. Wong, S. Fujii, “Optical step frequency reflectometer,” J. Appl. Phys. 68, 932–936 (1990).
    [CrossRef]
  7. R. C. Youngquist, S. Carr, D. E. N. Davis, “Optical coherence-domain reflectometry; a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987).
    [CrossRef] [PubMed]
  8. K. Hotate, O. Kamatani, “Optical coherence domain reflectometry by synthesis of coherence function,” in Distributed and Multiplexed Fiber Optic Sensors, A. D. Kersey, J. P. Dakin, eds., Proc. SPIE1586, 32–45 (1992).
    [CrossRef]
  9. Z. He, K. Hotate, “Measurements for scattering medium by synthesis of optical coherence function with super-structure grating distributed Bragg reflector laser diode,” Opt. Rev. 6, 372–377 (1999).
    [CrossRef]
  10. R. E. Lee, Scanning Electron Microscopy and X-Ray Microanalysis (Prentice-Hall, New York, 1993).
  11. J.-J. Greffet, R. Carminati, “Image formation in near field optics,” Prog. Surf. Sci. 56, 133–237 (1997).
    [CrossRef]
  12. P. K. Hansma, J. Tersoff, “Scanning tunneling microscope,” J. Appl. Phys. 61, R1–R23 (1987).
    [CrossRef]
  13. M. A. Paesler, Near Field Optics, Theory, Instrumentation, and Applications (Wiley, New York, 1996).
  14. A. G. Ruiter, J. A. Verman, K. O. van der Werf, N. F. van Hulst, “Dynamic behavior of tuning fork shear-force feedback,” Appl. Phys. Lett. 71, 28–30 (1997).
    [CrossRef]
  15. H. Ishii, F. Kano, Y. Yoshikuni, H. Yasaka, “Mode stabilization method for superstructure-grating DBR lasers,” J. Lightwave Technol. 16, 433–442 (1998).
    [CrossRef]
  16. H. Ishii, H. Tanabe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasi-continuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
    [CrossRef]
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  18. K. Iizuka, J. L. Yen, “Surface current on triangular and square metal cylinders,” IEEE Trans. Antennas Propag. AP-15, 795–801 (1967).
    [CrossRef]

1999 (1)

Z. He, K. Hotate, “Measurements for scattering medium by synthesis of optical coherence function with super-structure grating distributed Bragg reflector laser diode,” Opt. Rev. 6, 372–377 (1999).
[CrossRef]

1998 (1)

1997 (2)

A. G. Ruiter, J. A. Verman, K. O. van der Werf, N. F. van Hulst, “Dynamic behavior of tuning fork shear-force feedback,” Appl. Phys. Lett. 71, 28–30 (1997).
[CrossRef]

J.-J. Greffet, R. Carminati, “Image formation in near field optics,” Prog. Surf. Sci. 56, 133–237 (1997).
[CrossRef]

1996 (1)

H. Ishii, H. Tanabe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasi-continuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

1993 (1)

U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

1990 (1)

K. Iizuka, Y. Imai, A. P. Freundorfer, R. James, R. Wong, S. Fujii, “Optical step frequency reflectometer,” J. Appl. Phys. 68, 932–936 (1990).
[CrossRef]

1989 (1)

H. Barfuss, E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution,” J. Lightwave Technol. 7, 3–10 (1989).
[CrossRef]

1987 (3)

1985 (1)

1976 (1)

1967 (1)

K. Iizuka, J. L. Yen, “Surface current on triangular and square metal cylinders,” IEEE Trans. Antennas Propag. AP-15, 795–801 (1967).
[CrossRef]

Barfuss, H.

H. Barfuss, E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution,” J. Lightwave Technol. 7, 3–10 (1989).
[CrossRef]

Barnoski, M. K.

Brinkmeyer, E.

U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

H. Barfuss, E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution,” J. Lightwave Technol. 7, 3–10 (1989).
[CrossRef]

Carminati, R.

J.-J. Greffet, R. Carminati, “Image formation in near field optics,” Prog. Surf. Sci. 56, 133–237 (1997).
[CrossRef]

Carr, S.

Danielson, B. L.

Davis, D. E. N.

Freundorfer, A. P.

K. Iizuka, Y. Imai, A. P. Freundorfer, R. James, R. Wong, S. Fujii, “Optical step frequency reflectometer,” J. Appl. Phys. 68, 932–936 (1990).
[CrossRef]

Fujii, S.

K. Iizuka, Y. Imai, A. P. Freundorfer, R. James, R. Wong, S. Fujii, “Optical step frequency reflectometer,” J. Appl. Phys. 68, 932–936 (1990).
[CrossRef]

Glombitza, U.

U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Greffet, J.-J.

J.-J. Greffet, R. Carminati, “Image formation in near field optics,” Prog. Surf. Sci. 56, 133–237 (1997).
[CrossRef]

Hansma, P. K.

P. K. Hansma, J. Tersoff, “Scanning tunneling microscope,” J. Appl. Phys. 61, R1–R23 (1987).
[CrossRef]

He, Z.

Z. He, K. Hotate, “Measurements for scattering medium by synthesis of optical coherence function with super-structure grating distributed Bragg reflector laser diode,” Opt. Rev. 6, 372–377 (1999).
[CrossRef]

Hotate, K.

Z. He, K. Hotate, “Measurements for scattering medium by synthesis of optical coherence function with super-structure grating distributed Bragg reflector laser diode,” Opt. Rev. 6, 372–377 (1999).
[CrossRef]

K. Hotate, O. Kamatani, “Optical coherence domain reflectometry by synthesis of coherence function,” in Distributed and Multiplexed Fiber Optic Sensors, A. D. Kersey, J. P. Dakin, eds., Proc. SPIE1586, 32–45 (1992).
[CrossRef]

Iizuka, K.

K. Iizuka, Y. Imai, A. P. Freundorfer, R. James, R. Wong, S. Fujii, “Optical step frequency reflectometer,” J. Appl. Phys. 68, 932–936 (1990).
[CrossRef]

J. Nakayama, K. Iizuka, J. Nielsen, “Optical fiber fault locator by the step frequency method,” Appl. Opt. 26, 440–443 (1987).
[CrossRef] [PubMed]

K. Iizuka, J. L. Yen, “Surface current on triangular and square metal cylinders,” IEEE Trans. Antennas Propag. AP-15, 795–801 (1967).
[CrossRef]

Imai, Y.

K. Iizuka, Y. Imai, A. P. Freundorfer, R. James, R. Wong, S. Fujii, “Optical step frequency reflectometer,” J. Appl. Phys. 68, 932–936 (1990).
[CrossRef]

Ishii, H.

H. Ishii, F. Kano, Y. Yoshikuni, H. Yasaka, “Mode stabilization method for superstructure-grating DBR lasers,” J. Lightwave Technol. 16, 433–442 (1998).
[CrossRef]

H. Ishii, H. Tanabe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasi-continuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

James, R.

K. Iizuka, Y. Imai, A. P. Freundorfer, R. James, R. Wong, S. Fujii, “Optical step frequency reflectometer,” J. Appl. Phys. 68, 932–936 (1990).
[CrossRef]

Jensen, S. M.

Kamatani, O.

K. Hotate, O. Kamatani, “Optical coherence domain reflectometry by synthesis of coherence function,” in Distributed and Multiplexed Fiber Optic Sensors, A. D. Kersey, J. P. Dakin, eds., Proc. SPIE1586, 32–45 (1992).
[CrossRef]

Kano, F.

H. Ishii, F. Kano, Y. Yoshikuni, H. Yasaka, “Mode stabilization method for superstructure-grating DBR lasers,” J. Lightwave Technol. 16, 433–442 (1998).
[CrossRef]

H. Ishii, H. Tanabe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasi-continuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

Kondo, Y.

H. Ishii, H. Tanabe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasi-continuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

Lee, R. E.

R. E. Lee, Scanning Electron Microscopy and X-Ray Microanalysis (Prentice-Hall, New York, 1993).

Nakayama, J.

Nielsen, J.

Paesler, M. A.

M. A. Paesler, Near Field Optics, Theory, Instrumentation, and Applications (Wiley, New York, 1996).

Ruiter, A. G.

A. G. Ruiter, J. A. Verman, K. O. van der Werf, N. F. van Hulst, “Dynamic behavior of tuning fork shear-force feedback,” Appl. Phys. Lett. 71, 28–30 (1997).
[CrossRef]

Tanabe, H.

H. Ishii, H. Tanabe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasi-continuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

Tersoff, J.

P. K. Hansma, J. Tersoff, “Scanning tunneling microscope,” J. Appl. Phys. 61, R1–R23 (1987).
[CrossRef]

Tohmori, Y.

H. Ishii, H. Tanabe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasi-continuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

van der Werf, K. O.

A. G. Ruiter, J. A. Verman, K. O. van der Werf, N. F. van Hulst, “Dynamic behavior of tuning fork shear-force feedback,” Appl. Phys. Lett. 71, 28–30 (1997).
[CrossRef]

van Hulst, N. F.

A. G. Ruiter, J. A. Verman, K. O. van der Werf, N. F. van Hulst, “Dynamic behavior of tuning fork shear-force feedback,” Appl. Phys. Lett. 71, 28–30 (1997).
[CrossRef]

Verman, J. A.

A. G. Ruiter, J. A. Verman, K. O. van der Werf, N. F. van Hulst, “Dynamic behavior of tuning fork shear-force feedback,” Appl. Phys. Lett. 71, 28–30 (1997).
[CrossRef]

Wong, R.

K. Iizuka, Y. Imai, A. P. Freundorfer, R. James, R. Wong, S. Fujii, “Optical step frequency reflectometer,” J. Appl. Phys. 68, 932–936 (1990).
[CrossRef]

Yasaka, H.

Yen, J. L.

K. Iizuka, J. L. Yen, “Surface current on triangular and square metal cylinders,” IEEE Trans. Antennas Propag. AP-15, 795–801 (1967).
[CrossRef]

Yoshikuni, Y.

H. Ishii, F. Kano, Y. Yoshikuni, H. Yasaka, “Mode stabilization method for superstructure-grating DBR lasers,” J. Lightwave Technol. 16, 433–442 (1998).
[CrossRef]

H. Ishii, H. Tanabe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasi-continuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

Youngquist, R. C.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

A. G. Ruiter, J. A. Verman, K. O. van der Werf, N. F. van Hulst, “Dynamic behavior of tuning fork shear-force feedback,” Appl. Phys. Lett. 71, 28–30 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Ishii, H. Tanabe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasi-continuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. Iizuka, J. L. Yen, “Surface current on triangular and square metal cylinders,” IEEE Trans. Antennas Propag. AP-15, 795–801 (1967).
[CrossRef]

J. Appl. Phys. (2)

P. K. Hansma, J. Tersoff, “Scanning tunneling microscope,” J. Appl. Phys. 61, R1–R23 (1987).
[CrossRef]

K. Iizuka, Y. Imai, A. P. Freundorfer, R. James, R. Wong, S. Fujii, “Optical step frequency reflectometer,” J. Appl. Phys. 68, 932–936 (1990).
[CrossRef]

J. Lightwave Technol. (3)

H. Barfuss, E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution,” J. Lightwave Technol. 7, 3–10 (1989).
[CrossRef]

U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

H. Ishii, F. Kano, Y. Yoshikuni, H. Yasaka, “Mode stabilization method for superstructure-grating DBR lasers,” J. Lightwave Technol. 16, 433–442 (1998).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

Z. He, K. Hotate, “Measurements for scattering medium by synthesis of optical coherence function with super-structure grating distributed Bragg reflector laser diode,” Opt. Rev. 6, 372–377 (1999).
[CrossRef]

Prog. Surf. Sci. (1)

J.-J. Greffet, R. Carminati, “Image formation in near field optics,” Prog. Surf. Sci. 56, 133–237 (1997).
[CrossRef]

Other (4)

R. E. Lee, Scanning Electron Microscopy and X-Ray Microanalysis (Prentice-Hall, New York, 1993).

M. A. Paesler, Near Field Optics, Theory, Instrumentation, and Applications (Wiley, New York, 1996).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

K. Hotate, O. Kamatani, “Optical coherence domain reflectometry by synthesis of coherence function,” in Distributed and Multiplexed Fiber Optic Sensors, A. D. Kersey, J. P. Dakin, eds., Proc. SPIE1586, 32–45 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Block diagram of the 3-D Laser Microvision. NBS, nonpolarizing beam splitter; AOM, acousto-optic modulator; PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Principle of the synthetic aperture 3-D Laser Microvision.

Fig. 3
Fig. 3

Fourier transform of the detector output with respect to the distance z of the vertical scan. The scan distance is z = 10 µm. The top arrow indicates the location of the spatial frequency of interest. (a) z0 = 2 µm, (b) z0 = 5 µm, and (c) z0 = 10 µm.

Fig. 4
Fig. 4

Performance of the synthetic aperture technique for various scanning distances z at different starting points z0.

Fig. 5
Fig. 5

Scanning paths of the synthetic aperture 3-D Laser Microvision.

Fig. 6
Fig. 6

Schematic drawing of the multiple-phase-shift SSG DBR laser with its current drivers.

Fig. 7
Fig. 7

Task diagram of the processing computer for the case of serial processing.

Fig. 8
Fig. 8

Same as in Fig. 7, but for the case of parallel processing.

Fig. 9
Fig. 9

Measured results: (a) without the synthetic aperture scanning and (b) with the synthetic aperture scanning. The target is an array of microstrip lines at a width of approximately 15 µm whose cross section is shown at the bottom of the figure.

Fig. 10
Fig. 10

Displays of the 3-D Laser Microvision. The target was a (111)A GaAs substrate with thin metal electrodes. (a) Photograph of the target, (b) top and cross-sectional view of the target, (c) a quick look of the 2-D display, and (d) 3-D display.

Fig. 11
Fig. 11

Images of the microwave IC inductor obtained by the 3-D Laser Microvision. (a) A microwave IC inductor as a target, (b) 2-D scattering intensity of the quick-look display of the target, and (c) 3-D display of the target.

Fig. 12
Fig. 12

Image of the V groove. Note that due to the specular reflection, the slanted sides of the groove are not imaged. (a) Photograph of the target, (b) schematic view of the target, and (c) 3-D display of the target.

Fig. 13
Fig. 13

3-D Laser Microvision system pierces through the cover plate and resolves the IC pattern formed within the substrate. (a) Structure of the target: an IC pattern covered by a GaAs plate, (b) image of the top surface of the GaAs cover plate, and (c) image pierced through the cover plate.

Fig. 14
Fig. 14

3-D image taken by the 3-D Laser Microvision. (a) A sketch of the multilayer microwave IC, and (b) 3-D Laser Microvision display resolving the height profile of the target.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Sfn=m=0N-1 szmexpj4πvf0+nΔfz0+mΔz=expj4πvfnz0m=0N-1 szmexpj4πvf0mΔz×expj4πvmnΔfΔz,
Hn=Sfnexp-j4πvfnz0,
hm=Nszmexpj4πvf0mΔz,
2ΔfΔzv=1N,
Hn=1Nm=0N-1 hmexpj2πnmN.
hm=n=0N-1 Hnexp-j2πmnN.
Δz=v2NΔf,  zmax=NΔz=v2Δf.
Hn=Sfn,
argHn=argSfn-4πvf0+nΔfz0.
szm=1N hm;
EAz=A expj2πλz=A expj2πfsz.
EBz=B expj2πλz2+d21/2.
ϕ=2πλz+d22z.
z0z0+zEzexp-j2πfszdz,
SIR=z0z0+zEAzexp-j2πfszdzz0z0+zEBzexp-j2πfszdz2=zz0z0+zexpj2πfsz2+d21/2-zdz2.

Metrics