Abstract

A simple method of nulling broadband light is presented. A mirror-symmetric pair of right-angle periscopes is first used to introduce a geometric field flip between two incident light beams, after which the light is combined by means of one of a number of constructive two-beam interferometers. A reciprocal pair of beam-splitter passages provides for complete symmetry. Such an approach greatly eases beam-splitter design requirements and should find use both in initial ground-based nulling experiments and ultimately in space-borne interferometers targeted at direct extrasolar planet detection.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Beichman, N. J. Woolf, C. A. Lindensmith, “The terrestrial planet finder (TPF): a NASA origins program to search for habitable planets,” (Jet Propulsion Laboratory, Pasadena, Calif., 1999); http://tpf.jpl.nasa.gov .
  2. K. Wallace, G. Hardy, E. Serabyn, “Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars,” Nature 406, 700–702 (2000).
    [CrossRef] [PubMed]
  3. P. Baudoz, J. Gay, Y. Rabbia, “Interfero-coronagraphy: a tool for detection of faint companions,” in Vol. 134 of the ASP Conference Series, Brown Dwarfs and Extrasolar Planets, R. Rebelo, E. L. Martin, M. R. Zapatero Osorio, eds. (Astronomical Society of the Pacific, San Francisco, Calif., 1998), pp. 254–261.
  4. R. M. Morgan, J. Burge, N. Woolf, “Nulling interferometric beam combiner utilizing dielectric plates: experimental results in the visible broadband,” in Interferometry in Optical Astronomy, P. J. Lena, A. Quirrenbach, eds., Proc. SPIE4006, 340–348 (2000).
    [CrossRef]
  5. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), Sect. 5.3.
  6. Z. Knittl, Optics of Thin Films (Wiley, New York, 1976), Sect. 6.1.
  7. E. Serabyn, J. K. Wallace, G. J. Hardy, E. G. H. Schmidtlin, H. T. Nguyen, “Deep nulling of visible laser light,” Appl. Opt. 38, 7128–7132 (1999).
    [CrossRef]
  8. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1984).
  9. D. Mozurkewich, “A hybrid design for a six way beam combiner,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 76–80 (1994).
    [CrossRef]

2000 (1)

K. Wallace, G. Hardy, E. Serabyn, “Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars,” Nature 406, 700–702 (2000).
[CrossRef] [PubMed]

1999 (1)

Baudoz, P.

P. Baudoz, J. Gay, Y. Rabbia, “Interfero-coronagraphy: a tool for detection of faint companions,” in Vol. 134 of the ASP Conference Series, Brown Dwarfs and Extrasolar Planets, R. Rebelo, E. L. Martin, M. R. Zapatero Osorio, eds. (Astronomical Society of the Pacific, San Francisco, Calif., 1998), pp. 254–261.

Beichman, C. A.

C. A. Beichman, N. J. Woolf, C. A. Lindensmith, “The terrestrial planet finder (TPF): a NASA origins program to search for habitable planets,” (Jet Propulsion Laboratory, Pasadena, Calif., 1999); http://tpf.jpl.nasa.gov .

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1984).

Burge, J.

R. M. Morgan, J. Burge, N. Woolf, “Nulling interferometric beam combiner utilizing dielectric plates: experimental results in the visible broadband,” in Interferometry in Optical Astronomy, P. J. Lena, A. Quirrenbach, eds., Proc. SPIE4006, 340–348 (2000).
[CrossRef]

Gay, J.

P. Baudoz, J. Gay, Y. Rabbia, “Interfero-coronagraphy: a tool for detection of faint companions,” in Vol. 134 of the ASP Conference Series, Brown Dwarfs and Extrasolar Planets, R. Rebelo, E. L. Martin, M. R. Zapatero Osorio, eds. (Astronomical Society of the Pacific, San Francisco, Calif., 1998), pp. 254–261.

Hardy, G.

K. Wallace, G. Hardy, E. Serabyn, “Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars,” Nature 406, 700–702 (2000).
[CrossRef] [PubMed]

Hardy, G. J.

Knittl, Z.

Z. Knittl, Optics of Thin Films (Wiley, New York, 1976), Sect. 6.1.

Lindensmith, C. A.

C. A. Beichman, N. J. Woolf, C. A. Lindensmith, “The terrestrial planet finder (TPF): a NASA origins program to search for habitable planets,” (Jet Propulsion Laboratory, Pasadena, Calif., 1999); http://tpf.jpl.nasa.gov .

Morgan, R. M.

R. M. Morgan, J. Burge, N. Woolf, “Nulling interferometric beam combiner utilizing dielectric plates: experimental results in the visible broadband,” in Interferometry in Optical Astronomy, P. J. Lena, A. Quirrenbach, eds., Proc. SPIE4006, 340–348 (2000).
[CrossRef]

Mozurkewich, D.

D. Mozurkewich, “A hybrid design for a six way beam combiner,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 76–80 (1994).
[CrossRef]

Nguyen, H. T.

Rabbia, Y.

P. Baudoz, J. Gay, Y. Rabbia, “Interfero-coronagraphy: a tool for detection of faint companions,” in Vol. 134 of the ASP Conference Series, Brown Dwarfs and Extrasolar Planets, R. Rebelo, E. L. Martin, M. R. Zapatero Osorio, eds. (Astronomical Society of the Pacific, San Francisco, Calif., 1998), pp. 254–261.

Schmidtlin, E. G. H.

Serabyn, E.

K. Wallace, G. Hardy, E. Serabyn, “Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars,” Nature 406, 700–702 (2000).
[CrossRef] [PubMed]

E. Serabyn, J. K. Wallace, G. J. Hardy, E. G. H. Schmidtlin, H. T. Nguyen, “Deep nulling of visible laser light,” Appl. Opt. 38, 7128–7132 (1999).
[CrossRef]

Wallace, J. K.

Wallace, K.

K. Wallace, G. Hardy, E. Serabyn, “Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars,” Nature 406, 700–702 (2000).
[CrossRef] [PubMed]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1984).

Woolf, N.

R. M. Morgan, J. Burge, N. Woolf, “Nulling interferometric beam combiner utilizing dielectric plates: experimental results in the visible broadband,” in Interferometry in Optical Astronomy, P. J. Lena, A. Quirrenbach, eds., Proc. SPIE4006, 340–348 (2000).
[CrossRef]

Woolf, N. J.

C. A. Beichman, N. J. Woolf, C. A. Lindensmith, “The terrestrial planet finder (TPF): a NASA origins program to search for habitable planets,” (Jet Propulsion Laboratory, Pasadena, Calif., 1999); http://tpf.jpl.nasa.gov .

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), Sect. 5.3.

Appl. Opt. (1)

Nature (1)

K. Wallace, G. Hardy, E. Serabyn, “Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars,” Nature 406, 700–702 (2000).
[CrossRef] [PubMed]

Other (7)

P. Baudoz, J. Gay, Y. Rabbia, “Interfero-coronagraphy: a tool for detection of faint companions,” in Vol. 134 of the ASP Conference Series, Brown Dwarfs and Extrasolar Planets, R. Rebelo, E. L. Martin, M. R. Zapatero Osorio, eds. (Astronomical Society of the Pacific, San Francisco, Calif., 1998), pp. 254–261.

R. M. Morgan, J. Burge, N. Woolf, “Nulling interferometric beam combiner utilizing dielectric plates: experimental results in the visible broadband,” in Interferometry in Optical Astronomy, P. J. Lena, A. Quirrenbach, eds., Proc. SPIE4006, 340–348 (2000).
[CrossRef]

P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988), Sect. 5.3.

Z. Knittl, Optics of Thin Films (Wiley, New York, 1976), Sect. 6.1.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1984).

D. Mozurkewich, “A hybrid design for a six way beam combiner,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 76–80 (1994).
[CrossRef]

C. A. Beichman, N. J. Woolf, C. A. Lindensmith, “The terrestrial planet finder (TPF): a NASA origins program to search for habitable planets,” (Jet Propulsion Laboratory, Pasadena, Calif., 1999); http://tpf.jpl.nasa.gov .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of a mirror-reflected pair of right-angle periscopes. Each beam encounters two mirrors at the locations of the 90° folds. Both the apertures and the fields undergo a relative rotation of 180° because of the oppositely directed middle beam segments. Each polarization component undergoes one s- and one p-plane reflection.

Fig. 2
Fig. 2

(a) Definition of beam-splitter electric field reflection and transmission coefficients. The beam splitter is illustrated as composed of a substrate (clear) with a multilayer dielectric coating (black) on one side. The opposite side of the substrate has an antireflection coating that is not shown. (b) Illustration of the electric fields arriving at the outputs of a Michelson interferometer, in which the beam splitter is used in double pass. At zero OPD, the light emerges in the constructive balanced outputs given by the coefficient cross products. In the figure the outputs are offset for clarity. This layout applies as well to rotational shearing interferometers, in which the balanced outputs are made destructive at zero OPD by replacing the two flat mirrors in the two arms with a pair of orthogonal rooftop mirrors. (c) Illustration of the electric fields arriving at the outputs of a modified interferometer in which an inverted pair of beam splitters is used for the two beam-splitter encounters.

Fig. 3
Fig. 3

Three configurations for constructive beam combiners derived from classical Michelson, Sagnac, and Mach–Zehnder interferometers. At zero OPD, constructive interference occurs at the balanced outputs (shown as solid heavy arrows). In conjunction with a prior field flip these balanced outputs become nulled outputs at zero OPD. The offset pairs of short segments on the input beams indicate the wave-front offsets needed for path-length matching at the outputs.

Fig. 4
Fig. 4

Full layout of the Mach–Zehnder-derived nulling beam combiner, including the input mirror-reflected periscope pair. In this layout, the two input beams lie in a vertical plane, and the postperiscope nulling optics lie in a horizontal plane.

Metrics