Abstract

A method for precision small-angle measurement is proposed. This method is based on the total-internal-reflection effect of a light beam at a pair of glass prisms. Angular displacement of the light beam is measured when the intensity change of the reflected beam is detected as a result of the relative phase shift between the s- and the p-polarized beams. An initial phase shift between the s- and the p-polarized components is introduced to increase measurement sensitivity. For increased measurement linearity and reduced effect of laser power fluctuation on the output, a differential method is used in which the light beam is split equally into two beams, each reflected at a prism and detected by a photodiode. The output is obtained as the difference of the two detected intensities divided by their sum. A prototype device was built, which demonstrated a nonlinearity error of 1.3% in a measurement range of ±0.6° or 0.4% in ±0.3°. The peak-to-peak noise level was found to be at approximately 0.5 arc sec. This noise level can be reduced further and resolution increased by a reduction of the measurement range.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription