Abstract

Recent advances in the study of the magnetorheological finishing (MRF) have allowed for the characterization of the dynamic yield stress of the magnetorheological (MR) fluid, as well as the nanohardness (H nano) of the carbonyl iron (CI) used in MRF. Knowledge of these properties has allowed for a more complete study of the mechanisms of material removal in MRF. Material removal experiments show that the nanohardness of CI is important in MRF with nonaqueous MR fluids with no nonmagnetic abrasives, but is relatively unimportant in aqueous MR fluids or when nonmagnetic abrasives are present. The hydrated layer created by the chemical effects of water is shown to change the way material is removed by hard CI as the MR fluid transitions from a nonaqueous MR fluid to an aqueous MR fluid. Drag force measurements and atomic force microscope scans demonstrate that, when added to a MR fluid, nonmagnetic abrasives (cerium oxide, aluminum oxide, and diamond) are driven toward the workpiece surface because of the gradient in the magnetic field and hence become responsible for material removal. Removal rates increase with the addition of these polishing abrasives. The relative increase depends on the amount and type of abrasive used.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Cumbo, “Chemo-mechanical interactions in optical polishing,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1993), Chap. 1.
  2. K. Buijs, M. Korpel-Van Houten, “A model for lapping of glass,” J. Mater. Sci. 28, 3014–3020 (1993).
    [CrossRef]
  3. J. C. Lambropoulos, S. D. Jacobs, J. Ruckman, “Material removal from grinding to polishing,” Ceram. Trans. 102, 113–128 (1999).
  4. T. S. Izumitani, Optical Glass, American Institute of Physics Translation Series (American Institute of Physics, New York, 1986), pp. 92–98.
  5. A. Kaller, “On the polishing of glass, particularly the precision polishing of optical surfaces,” Glastech. Ber. 64, 241–252 (1991).
  6. F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214–256 (1927).
  7. W. L. Silvernail, N. J. Goetzinger, “The mechanics of glass polishing: part one,” The Glass Industry (April, 1971), pp. 130–133, 152.
  8. W. L. Silvernail, N. J. Goetzinger, “The mechanism of glass polishing: conclusion,” The Glass Industry (May, 1971), pp. 172–175.
  9. T. A. Michalske, B. C. Bunker, “A chemical kinetics model for glass fracture,” J. Am. Ceram. Soc. 76, 2613–2618 (1993).
    [CrossRef]
  10. L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 20, 152–171 (1990).
    [CrossRef]
  11. M. J. Cumbo, D. Fairhurst, S. D. Jacobs, B. E. Puchebner, “Slurry particle size evolution during the polishing of optical glass,” Appl. Opt. 34, 3743–3755 (1995).
    [CrossRef] [PubMed]
  12. H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969).
    [CrossRef]
  13. M. Maaza, B. Farnoux, F. Samuel, C. Sella, T. Trocellier, “Effect of mechanical polishing on the surface structure of glasses studied by grazing angle neutron reflectometry,” Opt. Commun. 100, 220–230 (1993).
    [CrossRef]
  14. A. B. Shorey, K. Xin, K. Chen, J. C. Lambropoulos, “Deformation of fused silica: nanoindentation and densification,” in Inorganic Optical Materials, A. J. Marker, ed., Proc. SPIE3424, 72–81 (1999).
    [CrossRef]
  15. A. Kaller, “Properties of polishing media for precision optics,” Glastech. Ber. 6, 174–183 (1998).
  16. N. B. Kirk, J. V. Wood, “The effect of the calcination process on the crystallite shape of sol-gel cerium oxide used for glass polishing,” J. Mater. Sci. 30, 2171–2175 (1995).
    [CrossRef]
  17. D. Golini, S. Jacobs, W. Kordonski, P. Dumas, “Precision optics fabrication using magnetorheological finishing,” in Advanced Materials for Optics and Precision Structures, M. Ealey, R. A. Paquin, T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Review Series (SPIE, Bellingham, Wash., 1997), pp. 251–274.
  18. S. D. Jacobs, S. A. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceram. Trans. 102, 185–199 (1999).
  19. S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, P. Dumas, “Details of the polishing spot in magnetorheological finishing (MRF),” in Optical Manufacturing and Testing III, P. Stahl, ed., Proc. SPIE3782, 92–100 (1999).
    [CrossRef]
  20. S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent5,804,095 (8September1998).
  21. We used Zygo Mark IVxp or Zygo GPI xpHR phase-shifting interferometer systems for all data acquisition and analysis related to polishing spots and a He–Ne laser source with λ = 632.8 nm (Zygo Corp., Middlefield, Conn. 06455).
  22. Zygo NewView white-light optical profiler, areal over 0.25 mm × 0.35 mm with a 20× Mirau objective, 1.1-µm lateral resolution (Zygo Corp., Middlefield Conn. 06455).
  23. W. Kordonski, D. Golini, P. Dumas, S. Hogan, S. Jacobs, “Magnetorheological suspension-based finishing technology (MRF),” in Fifth Annual International Symposium on Smart Structures and Materials, J. M. Sater, ed., Proc. SPIE3326, 527–535 (1998).
  24. A. B. Shorey, “Mechanisms of material removal in magnetorheological finishing (MRF) of glass,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 2000), Chap. 3.
  25. Ref. 24, Chap. 2.
  26. A. B. Shorey, W. I. Kordonski, S. R. Gorodkin, S. D. Jacobs, R. F. Gans, K. M. Kwong, C. H. Farny, “Design and testing of a new magnetorheometer,” Rev. Sci. Instrum. 70, 4200–4206 (1999).
    [CrossRef]
  27. Q22 (QED Technologies, 1040 University Ave., Rochester, N.Y. 14607).
  28. Magnetic flux measurements were taken with the F. W. BellModel 9500 Gaussmeter (Bell Technologies Inc., Ontario, Fla. 32807).
  29. Computrac Max-1000 moisture analyzer (Arizona Instruments, Phoenix, Ariz.).
  30. Brookfield DV-III cone and plate viscometer (Brookfield Engineering Laboratories, Inc., Stoughton, Mass. 02072).
  31. Nanoprobe III atomic force microscope (Digital Instruments, Santa Barbara, Calif.).
  32. We measured the pad with the I-scan pressure measurement system from Tekscan, Inc., Boston, Mass. We used a 0.1-mm-thick 5051 pressure film with a maximum allowable load of 345 kPa (50 psi) and a lateral resolution of 1.27 mm.
  33. Linear ball slide (Parker Hannafin Corp., Cleveland, Ohio).
  34. LKCP 475 5-lb load cell (Cooper Instruments, Warrenton, Va.).
  35. A. B. Shorey, K. M. Kwong, K. M. Johnson, S. D. Jacobs, “Nanoindentation hardness of particles used in magnetorheological finishing (MRF),” Appl. Opt. 39, 5194–5204 (2000).
    [CrossRef]
  36. A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
    [CrossRef]
  37. Corning 7940 (Corning, Inc., Corning, N.Y.).
  38. R. S. Higgins, S. A. Klinger, eds., High Purity Solvent Guide (Baxter Diagnostics, Inc., Burdick and Jackson Division, Muskegon, Mich. 49443, 1990).
  39. Brookfield DV-II digital viscometer (Brookfield Engineering Laboratories, Inc., Stoughton, Mass. 02072).
  40. Ref. 24, Chap. 5.
  41. NanoTek cerium oxide (Nanophase Technologies Corp., Burr Ridge, Ill.).
  42. NanoTek (Gamma) aluminum oxide (Nanophase Technologies Corp., Burr Ridge, Ill.).
  43. 0.125-µm Hyprez Type PC diamonds (Engis Corp., Wheeling, Ill.).
  44. NanoTek cerium oxide and aluminum oxide product literature (Nanophase Technologies Corp., Burr Ridge, Ill., 2000), www.nanophase.com/HTML/PRODUCTS .
  45. I. KozhinovaCenter for Optics Manufacturing, University of Rochester, 240 East River Road, Rochester, N.Y. 14623 (Personal communication, 1999).
  46. “Fundamentals of particle sizing,” (Nanophase Technologies Corp., Burr Ridge, Ill., 1994).
  47. Engis diamond product literature (Engis Corp., Wheeling, Ill., 2000), www.engis.com/powders_powders.html .

2000

1999

S. D. Jacobs, S. A. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceram. Trans. 102, 185–199 (1999).

A. B. Shorey, W. I. Kordonski, S. R. Gorodkin, S. D. Jacobs, R. F. Gans, K. M. Kwong, C. H. Farny, “Design and testing of a new magnetorheometer,” Rev. Sci. Instrum. 70, 4200–4206 (1999).
[CrossRef]

J. C. Lambropoulos, S. D. Jacobs, J. Ruckman, “Material removal from grinding to polishing,” Ceram. Trans. 102, 113–128 (1999).

1998

A. Kaller, “Properties of polishing media for precision optics,” Glastech. Ber. 6, 174–183 (1998).

1995

N. B. Kirk, J. V. Wood, “The effect of the calcination process on the crystallite shape of sol-gel cerium oxide used for glass polishing,” J. Mater. Sci. 30, 2171–2175 (1995).
[CrossRef]

M. J. Cumbo, D. Fairhurst, S. D. Jacobs, B. E. Puchebner, “Slurry particle size evolution during the polishing of optical glass,” Appl. Opt. 34, 3743–3755 (1995).
[CrossRef] [PubMed]

1993

T. A. Michalske, B. C. Bunker, “A chemical kinetics model for glass fracture,” J. Am. Ceram. Soc. 76, 2613–2618 (1993).
[CrossRef]

K. Buijs, M. Korpel-Van Houten, “A model for lapping of glass,” J. Mater. Sci. 28, 3014–3020 (1993).
[CrossRef]

M. Maaza, B. Farnoux, F. Samuel, C. Sella, T. Trocellier, “Effect of mechanical polishing on the surface structure of glasses studied by grazing angle neutron reflectometry,” Opt. Commun. 100, 220–230 (1993).
[CrossRef]

1991

A. Kaller, “On the polishing of glass, particularly the precision polishing of optical surfaces,” Glastech. Ber. 64, 241–252 (1991).

1990

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 20, 152–171 (1990).
[CrossRef]

1971

W. L. Silvernail, N. J. Goetzinger, “The mechanics of glass polishing: part one,” The Glass Industry (April, 1971), pp. 130–133, 152.

W. L. Silvernail, N. J. Goetzinger, “The mechanism of glass polishing: conclusion,” The Glass Industry (May, 1971), pp. 172–175.

1969

H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969).
[CrossRef]

1927

F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214–256 (1927).

Arrasmith, S. A.

S. D. Jacobs, S. A. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceram. Trans. 102, 185–199 (1999).

Arrasmith, S. R.

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, P. Dumas, “Details of the polishing spot in magnetorheological finishing (MRF),” in Optical Manufacturing and Testing III, P. Stahl, ed., Proc. SPIE3782, 92–100 (1999).
[CrossRef]

Bell, F. W.

Magnetic flux measurements were taken with the F. W. BellModel 9500 Gaussmeter (Bell Technologies Inc., Ontario, Fla. 32807).

Buijs, K.

K. Buijs, M. Korpel-Van Houten, “A model for lapping of glass,” J. Mater. Sci. 28, 3014–3020 (1993).
[CrossRef]

Bunker, B. C.

T. A. Michalske, B. C. Bunker, “A chemical kinetics model for glass fracture,” J. Am. Ceram. Soc. 76, 2613–2618 (1993).
[CrossRef]

Chen, K.

A. B. Shorey, K. Xin, K. Chen, J. C. Lambropoulos, “Deformation of fused silica: nanoindentation and densification,” in Inorganic Optical Materials, A. J. Marker, ed., Proc. SPIE3424, 72–81 (1999).
[CrossRef]

Cook, L. M.

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 20, 152–171 (1990).
[CrossRef]

Cumbo, M. J.

M. J. Cumbo, D. Fairhurst, S. D. Jacobs, B. E. Puchebner, “Slurry particle size evolution during the polishing of optical glass,” Appl. Opt. 34, 3743–3755 (1995).
[CrossRef] [PubMed]

M. J. Cumbo, “Chemo-mechanical interactions in optical polishing,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1993), Chap. 1.

Dumas, P.

W. Kordonski, D. Golini, P. Dumas, S. Hogan, S. Jacobs, “Magnetorheological suspension-based finishing technology (MRF),” in Fifth Annual International Symposium on Smart Structures and Materials, J. M. Sater, ed., Proc. SPIE3326, 527–535 (1998).

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, P. Dumas, “Details of the polishing spot in magnetorheological finishing (MRF),” in Optical Manufacturing and Testing III, P. Stahl, ed., Proc. SPIE3782, 92–100 (1999).
[CrossRef]

D. Golini, S. Jacobs, W. Kordonski, P. Dumas, “Precision optics fabrication using magnetorheological finishing,” in Advanced Materials for Optics and Precision Structures, M. Ealey, R. A. Paquin, T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Review Series (SPIE, Bellingham, Wash., 1997), pp. 251–274.

Fairhurst, D.

Farnoux, B.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, T. Trocellier, “Effect of mechanical polishing on the surface structure of glasses studied by grazing angle neutron reflectometry,” Opt. Commun. 100, 220–230 (1993).
[CrossRef]

Farny, C. H.

A. B. Shorey, W. I. Kordonski, S. R. Gorodkin, S. D. Jacobs, R. F. Gans, K. M. Kwong, C. H. Farny, “Design and testing of a new magnetorheometer,” Rev. Sci. Instrum. 70, 4200–4206 (1999).
[CrossRef]

Gans, R. F.

A. B. Shorey, W. I. Kordonski, S. R. Gorodkin, S. D. Jacobs, R. F. Gans, K. M. Kwong, C. H. Farny, “Design and testing of a new magnetorheometer,” Rev. Sci. Instrum. 70, 4200–4206 (1999).
[CrossRef]

Goetzinger, N. J.

W. L. Silvernail, N. J. Goetzinger, “The mechanics of glass polishing: part one,” The Glass Industry (April, 1971), pp. 130–133, 152.

W. L. Silvernail, N. J. Goetzinger, “The mechanism of glass polishing: conclusion,” The Glass Industry (May, 1971), pp. 172–175.

Golini, D.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, P. Dumas, “Details of the polishing spot in magnetorheological finishing (MRF),” in Optical Manufacturing and Testing III, P. Stahl, ed., Proc. SPIE3782, 92–100 (1999).
[CrossRef]

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent5,804,095 (8September1998).

W. Kordonski, D. Golini, P. Dumas, S. Hogan, S. Jacobs, “Magnetorheological suspension-based finishing technology (MRF),” in Fifth Annual International Symposium on Smart Structures and Materials, J. M. Sater, ed., Proc. SPIE3326, 527–535 (1998).

D. Golini, S. Jacobs, W. Kordonski, P. Dumas, “Precision optics fabrication using magnetorheological finishing,” in Advanced Materials for Optics and Precision Structures, M. Ealey, R. A. Paquin, T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Review Series (SPIE, Bellingham, Wash., 1997), pp. 251–274.

Gorodkin, G. R.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent5,804,095 (8September1998).

Gorodkin, S. R.

A. B. Shorey, W. I. Kordonski, S. R. Gorodkin, S. D. Jacobs, R. F. Gans, K. M. Kwong, C. H. Farny, “Design and testing of a new magnetorheometer,” Rev. Sci. Instrum. 70, 4200–4206 (1999).
[CrossRef]

Gregg, L. L.

S. D. Jacobs, S. A. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceram. Trans. 102, 185–199 (1999).

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, P. Dumas, “Details of the polishing spot in magnetorheological finishing (MRF),” in Optical Manufacturing and Testing III, P. Stahl, ed., Proc. SPIE3782, 92–100 (1999).
[CrossRef]

Hogan, S.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, P. Dumas, “Details of the polishing spot in magnetorheological finishing (MRF),” in Optical Manufacturing and Testing III, P. Stahl, ed., Proc. SPIE3782, 92–100 (1999).
[CrossRef]

W. Kordonski, D. Golini, P. Dumas, S. Hogan, S. Jacobs, “Magnetorheological suspension-based finishing technology (MRF),” in Fifth Annual International Symposium on Smart Structures and Materials, J. M. Sater, ed., Proc. SPIE3326, 527–535 (1998).

Hubregsen, J.

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

Izumitani, T. S.

T. S. Izumitani, Optical Glass, American Institute of Physics Translation Series (American Institute of Physics, New York, 1986), pp. 92–98.

Jacobs, S.

D. Golini, S. Jacobs, W. Kordonski, P. Dumas, “Precision optics fabrication using magnetorheological finishing,” in Advanced Materials for Optics and Precision Structures, M. Ealey, R. A. Paquin, T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Review Series (SPIE, Bellingham, Wash., 1997), pp. 251–274.

W. Kordonski, D. Golini, P. Dumas, S. Hogan, S. Jacobs, “Magnetorheological suspension-based finishing technology (MRF),” in Fifth Annual International Symposium on Smart Structures and Materials, J. M. Sater, ed., Proc. SPIE3326, 527–535 (1998).

Jacobs, S. D.

A. B. Shorey, K. M. Kwong, K. M. Johnson, S. D. Jacobs, “Nanoindentation hardness of particles used in magnetorheological finishing (MRF),” Appl. Opt. 39, 5194–5204 (2000).
[CrossRef]

S. D. Jacobs, S. A. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceram. Trans. 102, 185–199 (1999).

J. C. Lambropoulos, S. D. Jacobs, J. Ruckman, “Material removal from grinding to polishing,” Ceram. Trans. 102, 113–128 (1999).

A. B. Shorey, W. I. Kordonski, S. R. Gorodkin, S. D. Jacobs, R. F. Gans, K. M. Kwong, C. H. Farny, “Design and testing of a new magnetorheometer,” Rev. Sci. Instrum. 70, 4200–4206 (1999).
[CrossRef]

M. J. Cumbo, D. Fairhurst, S. D. Jacobs, B. E. Puchebner, “Slurry particle size evolution during the polishing of optical glass,” Appl. Opt. 34, 3743–3755 (1995).
[CrossRef] [PubMed]

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, P. Dumas, “Details of the polishing spot in magnetorheological finishing (MRF),” in Optical Manufacturing and Testing III, P. Stahl, ed., Proc. SPIE3782, 92–100 (1999).
[CrossRef]

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent5,804,095 (8September1998).

Johnson, K. M.

Kaller, A.

A. Kaller, “Properties of polishing media for precision optics,” Glastech. Ber. 6, 174–183 (1998).

A. Kaller, “On the polishing of glass, particularly the precision polishing of optical surfaces,” Glastech. Ber. 64, 241–252 (1991).

Kinosita, K.

H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969).
[CrossRef]

Kirk, N. B.

N. B. Kirk, J. V. Wood, “The effect of the calcination process on the crystallite shape of sol-gel cerium oxide used for glass polishing,” J. Mater. Sci. 30, 2171–2175 (1995).
[CrossRef]

Kordonski, W.

W. Kordonski, D. Golini, P. Dumas, S. Hogan, S. Jacobs, “Magnetorheological suspension-based finishing technology (MRF),” in Fifth Annual International Symposium on Smart Structures and Materials, J. M. Sater, ed., Proc. SPIE3326, 527–535 (1998).

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent5,804,095 (8September1998).

D. Golini, S. Jacobs, W. Kordonski, P. Dumas, “Precision optics fabrication using magnetorheological finishing,” in Advanced Materials for Optics and Precision Structures, M. Ealey, R. A. Paquin, T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Review Series (SPIE, Bellingham, Wash., 1997), pp. 251–274.

Kordonski, W. I.

A. B. Shorey, W. I. Kordonski, S. R. Gorodkin, S. D. Jacobs, R. F. Gans, K. M. Kwong, C. H. Farny, “Design and testing of a new magnetorheometer,” Rev. Sci. Instrum. 70, 4200–4206 (1999).
[CrossRef]

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, P. Dumas, “Details of the polishing spot in magnetorheological finishing (MRF),” in Optical Manufacturing and Testing III, P. Stahl, ed., Proc. SPIE3782, 92–100 (1999).
[CrossRef]

Korpel-Van Houten, M.

K. Buijs, M. Korpel-Van Houten, “A model for lapping of glass,” J. Mater. Sci. 28, 3014–3020 (1993).
[CrossRef]

Kozhinova, I.

I. KozhinovaCenter for Optics Manufacturing, University of Rochester, 240 East River Road, Rochester, N.Y. 14623 (Personal communication, 1999).

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

Kozhinova, I. A.

S. D. Jacobs, S. A. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceram. Trans. 102, 185–199 (1999).

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, P. Dumas, “Details of the polishing spot in magnetorheological finishing (MRF),” in Optical Manufacturing and Testing III, P. Stahl, ed., Proc. SPIE3782, 92–100 (1999).
[CrossRef]

Kwong, K. M.

A. B. Shorey, K. M. Kwong, K. M. Johnson, S. D. Jacobs, “Nanoindentation hardness of particles used in magnetorheological finishing (MRF),” Appl. Opt. 39, 5194–5204 (2000).
[CrossRef]

A. B. Shorey, W. I. Kordonski, S. R. Gorodkin, S. D. Jacobs, R. F. Gans, K. M. Kwong, C. H. Farny, “Design and testing of a new magnetorheometer,” Rev. Sci. Instrum. 70, 4200–4206 (1999).
[CrossRef]

Lambropoulos, J. C.

J. C. Lambropoulos, S. D. Jacobs, J. Ruckman, “Material removal from grinding to polishing,” Ceram. Trans. 102, 113–128 (1999).

A. B. Shorey, K. Xin, K. Chen, J. C. Lambropoulos, “Deformation of fused silica: nanoindentation and densification,” in Inorganic Optical Materials, A. J. Marker, ed., Proc. SPIE3424, 72–81 (1999).
[CrossRef]

Maaza, M.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, T. Trocellier, “Effect of mechanical polishing on the surface structure of glasses studied by grazing angle neutron reflectometry,” Opt. Commun. 100, 220–230 (1993).
[CrossRef]

Michalske, T. A.

T. A. Michalske, B. C. Bunker, “A chemical kinetics model for glass fracture,” J. Am. Ceram. Soc. 76, 2613–2618 (1993).
[CrossRef]

Nishibori, M.

H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969).
[CrossRef]

Preston, F. W.

F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214–256 (1927).

Prokhorov, I. V.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent5,804,095 (8September1998).

Puchebner, B. E.

Romanofsky, H. J.

S. D. Jacobs, S. A. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceram. Trans. 102, 185–199 (1999).

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, P. Dumas, “Details of the polishing spot in magnetorheological finishing (MRF),” in Optical Manufacturing and Testing III, P. Stahl, ed., Proc. SPIE3782, 92–100 (1999).
[CrossRef]

Ruckman, J.

J. C. Lambropoulos, S. D. Jacobs, J. Ruckman, “Material removal from grinding to polishing,” Ceram. Trans. 102, 113–128 (1999).

Sakata, H.

H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969).
[CrossRef]

Samuel, F.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, T. Trocellier, “Effect of mechanical polishing on the surface structure of glasses studied by grazing angle neutron reflectometry,” Opt. Commun. 100, 220–230 (1993).
[CrossRef]

Sella, C.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, T. Trocellier, “Effect of mechanical polishing on the surface structure of glasses studied by grazing angle neutron reflectometry,” Opt. Commun. 100, 220–230 (1993).
[CrossRef]

Shorey, A. B.

A. B. Shorey, K. M. Kwong, K. M. Johnson, S. D. Jacobs, “Nanoindentation hardness of particles used in magnetorheological finishing (MRF),” Appl. Opt. 39, 5194–5204 (2000).
[CrossRef]

S. D. Jacobs, S. A. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceram. Trans. 102, 185–199 (1999).

A. B. Shorey, W. I. Kordonski, S. R. Gorodkin, S. D. Jacobs, R. F. Gans, K. M. Kwong, C. H. Farny, “Design and testing of a new magnetorheometer,” Rev. Sci. Instrum. 70, 4200–4206 (1999).
[CrossRef]

A. B. Shorey, “Mechanisms of material removal in magnetorheological finishing (MRF) of glass,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 2000), Chap. 3.

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

A. B. Shorey, K. Xin, K. Chen, J. C. Lambropoulos, “Deformation of fused silica: nanoindentation and densification,” in Inorganic Optical Materials, A. J. Marker, ed., Proc. SPIE3424, 72–81 (1999).
[CrossRef]

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, P. Dumas, “Details of the polishing spot in magnetorheological finishing (MRF),” in Optical Manufacturing and Testing III, P. Stahl, ed., Proc. SPIE3782, 92–100 (1999).
[CrossRef]

Silvernail, W. L.

W. L. Silvernail, N. J. Goetzinger, “The mechanism of glass polishing: conclusion,” The Glass Industry (May, 1971), pp. 172–175.

W. L. Silvernail, N. J. Goetzinger, “The mechanics of glass polishing: part one,” The Glass Industry (April, 1971), pp. 130–133, 152.

Strafford, T. D.

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent5,804,095 (8September1998).

Trocellier, T.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, T. Trocellier, “Effect of mechanical polishing on the surface structure of glasses studied by grazing angle neutron reflectometry,” Opt. Commun. 100, 220–230 (1993).
[CrossRef]

Wood, J. V.

N. B. Kirk, J. V. Wood, “The effect of the calcination process on the crystallite shape of sol-gel cerium oxide used for glass polishing,” J. Mater. Sci. 30, 2171–2175 (1995).
[CrossRef]

Xin, K.

A. B. Shorey, K. Xin, K. Chen, J. C. Lambropoulos, “Deformation of fused silica: nanoindentation and densification,” in Inorganic Optical Materials, A. J. Marker, ed., Proc. SPIE3424, 72–81 (1999).
[CrossRef]

Yokota, H.

H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969).
[CrossRef]

Appl. Opt.

Ceram. Trans.

S. D. Jacobs, S. A. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, “An overview of magnetorheological finishing (MRF) for precision optics manufacturing,” Ceram. Trans. 102, 185–199 (1999).

J. C. Lambropoulos, S. D. Jacobs, J. Ruckman, “Material removal from grinding to polishing,” Ceram. Trans. 102, 113–128 (1999).

Glastech. Ber.

A. Kaller, “Properties of polishing media for precision optics,” Glastech. Ber. 6, 174–183 (1998).

A. Kaller, “On the polishing of glass, particularly the precision polishing of optical surfaces,” Glastech. Ber. 64, 241–252 (1991).

J. Am. Ceram. Soc.

T. A. Michalske, B. C. Bunker, “A chemical kinetics model for glass fracture,” J. Am. Ceram. Soc. 76, 2613–2618 (1993).
[CrossRef]

J. Mater. Sci.

N. B. Kirk, J. V. Wood, “The effect of the calcination process on the crystallite shape of sol-gel cerium oxide used for glass polishing,” J. Mater. Sci. 30, 2171–2175 (1995).
[CrossRef]

K. Buijs, M. Korpel-Van Houten, “A model for lapping of glass,” J. Mater. Sci. 28, 3014–3020 (1993).
[CrossRef]

J. Non-Cryst. Solids

L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 20, 152–171 (1990).
[CrossRef]

J. Soc. Glass Technol.

F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214–256 (1927).

Opt. Commun.

M. Maaza, B. Farnoux, F. Samuel, C. Sella, T. Trocellier, “Effect of mechanical polishing on the surface structure of glasses studied by grazing angle neutron reflectometry,” Opt. Commun. 100, 220–230 (1993).
[CrossRef]

Rev. Sci. Instrum.

A. B. Shorey, W. I. Kordonski, S. R. Gorodkin, S. D. Jacobs, R. F. Gans, K. M. Kwong, C. H. Farny, “Design and testing of a new magnetorheometer,” Rev. Sci. Instrum. 70, 4200–4206 (1999).
[CrossRef]

Surf. Sci.

H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipsometric study of polished glass surfaces,” Surf. Sci. 16, 265–274 (1969).
[CrossRef]

The Glass Industry

W. L. Silvernail, N. J. Goetzinger, “The mechanics of glass polishing: part one,” The Glass Industry (April, 1971), pp. 130–133, 152.

W. L. Silvernail, N. J. Goetzinger, “The mechanism of glass polishing: conclusion,” The Glass Industry (May, 1971), pp. 172–175.

Other

T. S. Izumitani, Optical Glass, American Institute of Physics Translation Series (American Institute of Physics, New York, 1986), pp. 92–98.

A. B. Shorey, K. Xin, K. Chen, J. C. Lambropoulos, “Deformation of fused silica: nanoindentation and densification,” in Inorganic Optical Materials, A. J. Marker, ed., Proc. SPIE3424, 72–81 (1999).
[CrossRef]

D. Golini, S. Jacobs, W. Kordonski, P. Dumas, “Precision optics fabrication using magnetorheological finishing,” in Advanced Materials for Optics and Precision Structures, M. Ealey, R. A. Paquin, T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Review Series (SPIE, Bellingham, Wash., 1997), pp. 251–274.

A. B. Shorey, L. L. Gregg, H. J. Romanofsky, S. R. Arrasmith, I. Kozhinova, J. Hubregsen, S. D. Jacobs, “Study of material removal during magnetorheological finishing,” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 101–111 (1999).
[CrossRef]

Corning 7940 (Corning, Inc., Corning, N.Y.).

R. S. Higgins, S. A. Klinger, eds., High Purity Solvent Guide (Baxter Diagnostics, Inc., Burdick and Jackson Division, Muskegon, Mich. 49443, 1990).

Brookfield DV-II digital viscometer (Brookfield Engineering Laboratories, Inc., Stoughton, Mass. 02072).

Ref. 24, Chap. 5.

NanoTek cerium oxide (Nanophase Technologies Corp., Burr Ridge, Ill.).

NanoTek (Gamma) aluminum oxide (Nanophase Technologies Corp., Burr Ridge, Ill.).

0.125-µm Hyprez Type PC diamonds (Engis Corp., Wheeling, Ill.).

NanoTek cerium oxide and aluminum oxide product literature (Nanophase Technologies Corp., Burr Ridge, Ill., 2000), www.nanophase.com/HTML/PRODUCTS .

I. KozhinovaCenter for Optics Manufacturing, University of Rochester, 240 East River Road, Rochester, N.Y. 14623 (Personal communication, 1999).

“Fundamentals of particle sizing,” (Nanophase Technologies Corp., Burr Ridge, Ill., 1994).

Engis diamond product literature (Engis Corp., Wheeling, Ill., 2000), www.engis.com/powders_powders.html .

Q22 (QED Technologies, 1040 University Ave., Rochester, N.Y. 14607).

Magnetic flux measurements were taken with the F. W. BellModel 9500 Gaussmeter (Bell Technologies Inc., Ontario, Fla. 32807).

Computrac Max-1000 moisture analyzer (Arizona Instruments, Phoenix, Ariz.).

Brookfield DV-III cone and plate viscometer (Brookfield Engineering Laboratories, Inc., Stoughton, Mass. 02072).

Nanoprobe III atomic force microscope (Digital Instruments, Santa Barbara, Calif.).

We measured the pad with the I-scan pressure measurement system from Tekscan, Inc., Boston, Mass. We used a 0.1-mm-thick 5051 pressure film with a maximum allowable load of 345 kPa (50 psi) and a lateral resolution of 1.27 mm.

Linear ball slide (Parker Hannafin Corp., Cleveland, Ohio).

LKCP 475 5-lb load cell (Cooper Instruments, Warrenton, Va.).

M. J. Cumbo, “Chemo-mechanical interactions in optical polishing,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1993), Chap. 1.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, P. Dumas, “Details of the polishing spot in magnetorheological finishing (MRF),” in Optical Manufacturing and Testing III, P. Stahl, ed., Proc. SPIE3782, 92–100 (1999).
[CrossRef]

S. D. Jacobs, W. Kordonski, I. V. Prokhorov, D. Golini, G. R. Gorodkin, T. D. Strafford, “Magnetorheological fluid composition,” U.S. patent5,804,095 (8September1998).

We used Zygo Mark IVxp or Zygo GPI xpHR phase-shifting interferometer systems for all data acquisition and analysis related to polishing spots and a He–Ne laser source with λ = 632.8 nm (Zygo Corp., Middlefield, Conn. 06455).

Zygo NewView white-light optical profiler, areal over 0.25 mm × 0.35 mm with a 20× Mirau objective, 1.1-µm lateral resolution (Zygo Corp., Middlefield Conn. 06455).

W. Kordonski, D. Golini, P. Dumas, S. Hogan, S. Jacobs, “Magnetorheological suspension-based finishing technology (MRF),” in Fifth Annual International Symposium on Smart Structures and Materials, J. M. Sater, ed., Proc. SPIE3326, 527–535 (1998).

A. B. Shorey, “Mechanisms of material removal in magnetorheological finishing (MRF) of glass,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 2000), Chap. 3.

Ref. 24, Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

SEM of particles after one week of use in MRF and their initial size distributions. The dark spherical particles are the hard magnetic CI particles with a median size of 4.5 µm. The smaller, light particles are the cerium oxide abrasives. They initially have a broad size distribution with a median particle size of 3.5 µm. The large amount of small particles in the SEM suggest that milling of the cerium oxide occurs during use.

Fig. 2
Fig. 2

Setup used in MRF with a vertical wheel. (a) Photograph of an actual MRF machine. (b) Schematic of the MRF machine. Fluid is pumped from the conditioner at (1) to the nozzle at (2) onto the rotating wheel. The wheel carries the fluid between the part and the wheel into the magnetic field at (3) where the field causes it to stiffen. Hydrodynamic flow in this region produces stresses that are sufficient to cause removal to occur. The wheel continues to carry the fluid outside of the field region where it is removed from the wheel at (4). This fluid is again pumped to the conditioner to complete the circuit. (c) Cross-sectional view showing the relative orientation of the 150-mm-diameter spherical MRF wheel, pole pieces, and part. Field lines in the polishing zone are shown schematically.

Fig. 3
Fig. 3

Spot in MRF. Flow is from left to right. (a) Actual photograph of the contact region, or spot, on a stationary meniscus lens. (b) Interferogram of the material removed from the spot. Interferometric characterization of the spot gives a removal function that a computer program can use to vary the dwell time of this spot over the surface. This allows precise control of the figure during polishing. (c) Oblique view of the spot. The deepest region is at the trailing edge of the flow and is approximately the position of closest approach between the part and the wheel.

Fig. 4
Fig. 4

Schematic showing the contact between the MR fluid and the glass. The first callout shows the internal structure of the flow. The removal rate increases in the region of the core because of the increased shear stresses that result from the throttling action of the core. If material removal is considered over a small material volume, a Preston-type equation based on the shear stress at the part surface can be used to describe the removal process.

Fig. 5
Fig. 5

Dynamic yield stress measurements performed on the magnetorheometer for the MR fluids used in removal experiments: ♦, measurements at a flux density of 200 kA/m; ■, measurements performed at 250 kA/m. These measurements were performed in the polishing configuration, with a 0.5-mm gap, and a cup speed of 3.33 rpm at fields with a magnetic flux density of 200 and 250 kA/m. The yield stress is approximately 15 kPa at 200 kA/m and 20 kPa at 250 kA/m for the fluids between 40% and 45% CI concentration—the region of interest for these experiments. These data are for a variety of CI types, both with and without abrasives. The type of CI and presence of abrasives in this low loading has no effect on the dynamic yield stress of the MR fluid. Solid curves were added to aid the eye only.

Fig. 6
Fig. 6

Areal (0.25 mm × 0.35 mm) rms roughness versus peak removal rate on FS for MR fluids 1–5. The soft CI (MR fluid 1) is able to remove material at a very low rate in the absence of the chemical effects of water, but does not pit the surface. The hard CI without water (MR fluid 2) gives low removal and high roughness as the hard CI leaves pits and sleeks in the softer FS surface. The addition of 1-vol. % DI water to MR fluid 3 decreases the number of sleeks which results in a decrease in roughness and an increase in the removal rate. Fully aqueous MR fluids 4 and 5 show a decrease in pits and sleeks, a decrease in roughness, and a dramatic increase in the removal rate.

Fig. 7
Fig. 7

Removal rate versus concentration of cerium oxide for experiments with MR fluid 6 (each MR fluid contained 45-vol. % hard CI and the aqueous carrier fluid). The removal rate increases with cerium oxide concentration, leveling off at approximately 3 µm/min. The inset AFM scans and accompanying profiles show evolution of the morphology of the FS surface as the abrasive is added. The cerium oxide moves to the interface between the CI and the glass to control removal. The 15-nm scale applies to all profile plots. The areal rms roughness is indicated with each scan.

Fig. 8
Fig. 8

Removal rate as a function of abrasive type for MR fluids with 45-vol. % hard CI and the maximum amount of abrasive used during these experiments (only up to 0.1-vol. % diamond was used because of its high cost and high removal rates). The three abrasive types affect removal rates to a varying degree because of differences in how each interacts with the FS surface. Aluminum oxide gives deep (≈4-nm) discontinuous grooves, cerium oxide gives shallower (≈1–2-nm) continuous grooves, and diamond gives deep (≈4-nm) continuous grooves in the direction of flow. Characteristics of the polishing grooves help explain differences in removal rates for the three types of nanoabrasives. The 15-nm scale of the sectional profiles is shown, and the areal rms roughness is indicated below each scan.

Fig. 9
Fig. 9

Removal rate versus volume percent abrasive for 45-vol. % hard CI and the aqueous carrier fluid: ♦, diamond abrasive; ■, alumina; ▲, cerium oxide. The diamond abrasives are shown to have an immediate impact, dramatically increasing removal with less than 0.1-vol. % concentration. The cerium oxide gradually increases removal. The aluminum oxide proves ineffective at increasing removal rates.

Fig. 10
Fig. 10

Effect of the CI concentration on removal with the maximum amount of abrasive present: ♦, 0.1-vol. % diamond abrasive and hard CI; ■, 1.0-vol. % aluminum oxide and hard CI; ▲, 1.0-vol. % cerium oxide and hard CI; Δ, 1-vol. % cerium oxide with the soft CI. Once again the diamonds prove to be most efficient, reacting strongest to the increase in CI concentration. The cerium oxide data consist of both hard and soft CI. This shows that the hardness of CI is unimportant in the presence of the abrasive.

Fig. 11
Fig. 11

(a) Removal rate versus drag force and (b) removal rate versus peak pressure: ♦, 0.1-vol. % diamond and hard CI; ■, 1.0-vol. % aluminum oxide and hard CI; ▲, 1.0-vol. % cerium oxide and hard CI; Δ, 1.0-vol. % cerium oxide and soft CI. The removal rate increases linearly with pressure and drag force. The linear fits for the drag force go through the origin with high correlation coefficients, but do not for the pressure. This means that there can be removal with a nonzero pressure, but with no drag force (therefore no shear stress) there will be no removal. This supports the idea that shear stress controls the removal rate in MRF.

Fig. 12
Fig. 12

Effect on drag force when abrasives are added to MR fluids 4, 5, and 6 containing 45-vol. % CI: ♦, diamond abrasives; ■, alumunum oxide abrasives; ▲, cerium oxide abrasives. In each case the addition of abrasive reduces the drag force supporting the idea that MRF becomes a three-body abrasion problem. The cerium oxide maintains a high drag force, which supports the theories that cerium oxide has chemical tooth.

Fig. 13
Fig. 13

Removal rate versus drag force for the hard CI and cerium oxide: ♦, 0-vol. % cerium oxide; ■, 0.05-vol. % cerium oxide; ▲, 0.25-vol. % cerium oxide; ×, 0.50-vol. % cerium oxide; |R1, 1.0-vol. % cerium oxide. At a given cerium oxide concentration, the removal rate increases linearly with drag force.

Tables (3)

Tables Icon

Table 1 MR Fluids Used for Material Removal Experiments

Tables Icon

Table 2 Particle Size Information for the Nanoabrasives Used

Tables Icon

Table 3 Data from the Analysis of 3.0-µm Cross-Sectional Profiles of Surface Maps Shown in Fig. 8

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

w=μApvt,
dzdt=CpLAdsdt,

Metrics