Abstract

We report measurement of optical transport parameters of normal and malignant (ductal carcinoma) human breast tissue. A spatially resolved steady-state diffuse reflectance technique was used for measurement of the reduced scattering coefficient (μs′) and the absorption coefficient (μa) of the tissue. The anisotropy parameter of scattering (g) was estimated by goniophotometric measurements of the scattering phase function. The values of μs′ and μa for malignant breast tissue were observed to be larger than those for normal breast tissue over the wavelength region investigated (450–650 nm). Further, by using both the diffuse reflectance and the goniophotometric measurements, we estimated the Mie equivalent average radius of tissue scatterers to be larger in malignant tissue than in normal tissue.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Welch, M. J. C. Van Germert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. Van Germert, eds. (Plenum, New York, 1995), Chap. 2.
  2. C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  3. R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid meterials determined from reflection measurements. 1. Theory,” Appl. Opt. 22, 2456–2462 (1983).
    [CrossRef] [PubMed]
  4. R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid meterials determined from reflection measurements. 2. Measuring method and calibration,” Appl. Opt. 22, 2463–2467 (1983).
    [CrossRef] [PubMed]
  5. J. M. Steinke, A. P. Shepherd, “Diffuse reflectance of whole blood: model for a diverging light beam,” IEEE Trans. Biomed. Eng. 34, 826–833 (1986).
  6. B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Application in Photodynamic Therapy, G. J. Gomer, ed., Vol. IS06 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 219–231.
  7. J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
    [CrossRef] [PubMed]
  8. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved steady state diffuse reflectance for the noninvasive determination of tissue optical properties in-vivo,” Med Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  9. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  10. A. Kienle, M. S. Patterson, “Improved solution of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997).
    [CrossRef]
  11. A. Ishimaru, “Diffusion approximation,” in Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1, Chap. 9, pp. 175–186.
    [CrossRef]
  12. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
    [CrossRef]
  13. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt. 28, 2318–2324 (1989).
    [CrossRef] [PubMed]
  14. J. R. Mourant, T. Furelier, J. Boyer, T. M. Jhonson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [CrossRef] [PubMed]
  15. A. M. K. Nilsson, C. Sturessen, D. L. Liu, S. Andersson-Engles, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermo therapy,” Appl. Opt. 37, 1256–1267 (1998).
    [CrossRef]
  16. J. R. Mourant, J. P. Frayer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Jhonson, “Mechanism of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
    [CrossRef]
  17. V. C. Peters, D. R. Wyman, M. S. Ptterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef] [PubMed]
  18. A. J. Welch, M. J. C. Van Gemert, eds. Optical–Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995), pp. 284–285.
  19. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
    [CrossRef] [PubMed]
  20. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency domain photon migration,” Phil. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
    [CrossRef]
  21. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [CrossRef] [PubMed]
  22. M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
    [CrossRef] [PubMed]
  23. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
    [CrossRef]

2000 (2)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (3)

1997 (3)

1996 (1)

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved steady state diffuse reflectance for the noninvasive determination of tissue optical properties in-vivo,” Med Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

1990 (2)

V. C. Peters, D. R. Wyman, M. S. Ptterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
[CrossRef] [PubMed]

1989 (1)

1986 (1)

J. M. Steinke, A. P. Shepherd, “Diffuse reflectance of whole blood: model for a diverging light beam,” IEEE Trans. Biomed. Eng. 34, 826–833 (1986).

1983 (2)

Anderson, E.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency domain photon migration,” Phil. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Andersson-Engles, S.

Andreola, S.

Bertoni, A.

Bevilacqua, F.

Bigio, I. J.

Bohren, C. F.

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Boyer, J.

Bulter, J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Butler, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency domain photon migration,” Phil. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cahn, M.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency domain photon migration,” Phil. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cerussi, A.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Chance, B.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Coquoz, O.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency domain photon migration,” Phil. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Depeursinge, C.

Eick, A. A.

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Fantini, S.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved steady state diffuse reflectance for the noninvasive determination of tissue optical properties in-vivo,” Med Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Application in Photodynamic Therapy, G. J. Gomer, ed., Vol. IS06 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 219–231.

Feng, T. C.

Ferwerda, H. A.

Fishkin, J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Fishkin, J. B.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency domain photon migration,” Phil. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Franceschini, M. A.

Frank, G. L.

V. C. Peters, D. R. Wyman, M. S. Ptterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Frayer, J. P.

Furelier, T.

Groenhuis, R. A. J.

Gross, J. D.

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
[CrossRef]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency domain photon migration,” Phil. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Haskell, R. C.

Hielscher, A. H.

Hoffman, D. R.

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Holboke, M. J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Ishimaru, A.

A. Ishimaru, “Diffusion approximation,” in Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1, Chap. 9, pp. 175–186.
[CrossRef]

Jhonson, T. M.

Kaschke, M.

Kidney, D.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Kienle, A.

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Li, X.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Liu, D. L.

Marchesini, R.

Marquet, P.

McAdams, M.

Melloni, E.

Moesta, K. T.

Mourant, J. R.

Nilsson, A. M. K.

Page, D. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Patterson, M. S.

A. Kienle, M. S. Patterson, “Improved solution of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997).
[CrossRef]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved steady state diffuse reflectance for the noninvasive determination of tissue optical properties in-vivo,” Med Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Application in Photodynamic Therapy, G. J. Gomer, ed., Vol. IS06 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 219–231.

Peters, V. C.

V. C. Peters, D. R. Wyman, M. S. Ptterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Pham, D.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency domain photon migration,” Phil. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency domain photon migration,” Phil. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Piguet, D.

Ptterson, M. S.

V. C. Peters, D. R. Wyman, M. S. Ptterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Schlag, P. M.

Schmitt, J. M.

Sevick-Muraca, E. M.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Sha, N.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Shah, N.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Shen, D.

Shepherd, A. P.

J. M. Steinke, A. P. Shepherd, “Diffuse reflectance of whole blood: model for a diverging light beam,” IEEE Trans. Biomed. Eng. 34, 826–833 (1986).

Sichirollo, A. E.

Star, W. M.

A. J. Welch, M. J. C. Van Germert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. Van Germert, eds. (Plenum, New York, 1995), Chap. 2.

Steinke, J. M.

J. M. Steinke, A. P. Shepherd, “Diffuse reflectance of whole blood: model for a diverging light beam,” IEEE Trans. Biomed. Eng. 34, 826–833 (1986).

Sturessen, C.

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Svaasand, L. O.

Ten Bosch, J. J.

Tromberg, B. J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
[CrossRef]

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency domain photon migration,” Phil. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

Troy, T. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Tsay, T. T.

Van Germert, M. J. C.

A. J. Welch, M. J. C. Van Germert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. Van Germert, eds. (Plenum, New York, 1995), Chap. 2.

Venugopalan, V.

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency domain photon migration,” Phil. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Walker, E. C.

Walker, S. A.

Wall, R. T.

Welch, A. J.

A. J. Welch, M. J. C. Van Germert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. Van Germert, eds. (Plenum, New York, 1995), Chap. 2.

Wilson, B. C.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved steady state diffuse reflectance for the noninvasive determination of tissue optical properties in-vivo,” Med Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

A. J. Welch, M. J. C. Van Germert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. Van Germert, eds. (Plenum, New York, 1995), Chap. 2.

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Application in Photodynamic Therapy, G. J. Gomer, ed., Vol. IS06 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 219–231.

Wyman, D. R.

V. C. Peters, D. R. Wyman, M. S. Ptterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Yodh, A. G.

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Zhou, G. X.

Appl. Opt. (8)

R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid meterials determined from reflection measurements. 1. Theory,” Appl. Opt. 22, 2456–2462 (1983).
[CrossRef] [PubMed]

R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid meterials determined from reflection measurements. 2. Measuring method and calibration,” Appl. Opt. 22, 2463–2467 (1983).
[CrossRef] [PubMed]

R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt. 28, 2318–2324 (1989).
[CrossRef] [PubMed]

A. M. K. Nilsson, C. Sturessen, D. L. Liu, S. Andersson-Engles, “Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermo therapy,” Appl. Opt. 37, 1256–1267 (1998).
[CrossRef]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

J. R. Mourant, J. P. Frayer, A. H. Hielscher, A. A. Eick, D. Shen, T. M. Jhonson, “Mechanism of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586–3593 (1998).
[CrossRef]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
[CrossRef]

J. R. Mourant, T. Furelier, J. Boyer, T. M. Jhonson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

J. M. Steinke, A. P. Shepherd, “Diffuse reflectance of whole blood: model for a diverging light beam,” IEEE Trans. Biomed. Eng. 34, 826–833 (1986).

J. Biomed. Opt. (2)

M. J. Holboke, B. J. Tromberg, X. Li, N. Sha, J. Fishkin, D. Kidney, J. Bulter, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

Med Phys. (1)

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved steady state diffuse reflectance for the noninvasive determination of tissue optical properties in-vivo,” Med Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Phil. Trans. R. Soc. London Ser. B (1)

B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency domain photon migration,” Phil. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Phys. Med. Biol. (1)

V. C. Peters, D. R. Wyman, M. S. Ptterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Other (5)

A. J. Welch, M. J. C. Van Gemert, eds. Optical–Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995), pp. 284–285.

A. Ishimaru, “Diffusion approximation,” in Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1, Chap. 9, pp. 175–186.
[CrossRef]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Application in Photodynamic Therapy, G. J. Gomer, ed., Vol. IS06 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 219–231.

A. J. Welch, M. J. C. Van Germert, W. M. Star, B. C. Wilson, “Overview of tissue optics,” in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. Van Germert, eds. (Plenum, New York, 1995), Chap. 2.

C. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the setup for diffuse reflectance measurements.

Fig. 2
Fig. 2

Schematic of the goniophotometric setup for the measurement of anisotropy parameter g.

Fig. 3
Fig. 3

(a) Estimated values of μ s ′ for tissue phantoms with various concentrations of microspheres (0.61-µm diameter). The corresponding values computed with Mie theory are shown by dotted curves. The concentration of Methylene Blue was kept constant at 93 µM for all the tissue phantoms, which resulted in a value of 0.155/mm for μ a at 610 nm. (b) Estimated values of μ a for two tissue phantoms with 93-µM Methylene Blue. The results are shown for the phantoms with the lowest (3.36 × 1010/c.c.) and the highest (7.61 × 1010/c.c.) microsphere concentrations. The corresponding spectrophotometrically measured values are shown by the dotted curve. The results show that the estimates for μ a are not affected much by the value of concentration of microspheres over the range investigated.

Fig. 4
Fig. 4

Measured phase function (open circles) of a dilute microsphere (0.61-µm-diameter) suspension. The corresponding Mie theory–computed phase function is shown by a dotted curve.

Fig. 5
Fig. 5

Typical plot of radial variation of diffuse reflectance at 540 nm from a paired malignant and normal tissue sample. Dotted curves, theoretical fits to Eq. (6). The estimated values for μ s ′ and μ a of the malignant tissue were 2.87/mm and 0.22/mm, respectively. The corresponding values for normal tissue were 1.76/mm and 0.12/mm.

Fig. 6
Fig. 6

Spectral dependence of the mean value for the estimates of (a) μ s ′ and (b) μ a for malignant and normal breast tissue. The error bars represent standard deviations.

Fig. 7
Fig. 7

Typical angular scattering phase functions of (a) malignant tissue and (b) normal tissue. Filled circles, experimental data points; and dotted curves, the theoretical fits to the H–G function. Insets, deviations of the single H–G function from the experimental phase function for large angles (52°–165°).

Fig. 8
Fig. 8

Typical angular scattering phase functions of (a) malignant tissue and (b) normal tissue at large angles (52°–165°). Open circles, experimental data points; dotted curves, theoretical fits to the double H–G function.

Tables (2)

Tables Icon

Table 1 Mean Values of Estimates of g and the Mie Equivalent Scatterer Size r Mie from Measurements of Phase Function and from Diffuse Reflectance Measurements

Tables Icon

Table 2 Estimates for μs′ and μ a for Malignant (M) and Normal (N) Breast Tissue Obtained in the Wavelength Region 450–650 nm

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Rr=a/4πz0μeff+1/r1exp-μeff×r1/r12+z0+2zbμeff+1/r2exp-μeff×r2/r22,
z0=1/μtr, μtr=μs+μa transport coefficient, a=μs/μtr transport-corrected albedo of scattering, μeff=3μaμtr1/2 effective attenuation coefficient of tissue, r12=z02+r2,  r22=z0+2zb2+r2.
zb=2AD,
A=1+rd/1-rd,
rd=-1.4399n-2+0.7099n-1+0.6681+0.0639n,
Rr=0.118φsr+0.306Rfr,
φsr=1/4πDexp-μeff×r1/r1-exp-μeff×r2/r2,
Rfr=1/4πz0μeff+1/r1exp-μeff×r1/r12+z0+2zbμeff+1/r2exp-μeff×r2/r22.
Pθ=1/4πw01-g2/1+g2-2g cos θ3/2.
Pθ=1/4πw0β1-g12/1+g12-2g1 cos θ3/2+1-β1-g22/1+g22-2g2 cos θ3/2.
g=β1-g1+1-βg2.

Metrics