Abstract

We present a detailed description of a laboratory-based multispectral fluorescence imaging system (MFIS) for plant leaves. Fluorescence emissions with 360-nm excitation are captured at four spectral bands in the blue, green, red, and far-red regions of the spectrum centered at 450, 550, 680, and 740 nm, respectively. Preliminary experiments conducted with soybean leaves treated with a herbicide (DCMU) and short-term exposures to moderately elevated tropospheric ozone environment demonstrated the utilities of the newly developed MFIS. In addition, with the aid of fluorescence images of normal soybean leaves, several mechanisms governing the fluorescence emissions are discussed. Imaging results illustrate the versatility of fluorescence imaging, which provides information on the spatial variability of fluorescence patterns over leaf samples.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Yode, L. S. Daley, “Development of a visible spectroscopic method for determining chlorophyll a and b in vivo in leaf samples,” Spectroscopy 5, 44–50 (1990).
  2. E. W. Chappelle, M. S. Kim, J. E. McMurtrey, “Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids,” Remote Sens. Environ. 37, 121–128 (1992).
  3. J. E. McMurtrey, E. W. Chappelle, M. S. Kim, L. A. Corp, “Distinguishing nitrogen fertilization levels in field corn (Zea mays L) with actively induced fluorescence and passive reflectance measurements,” Remote Sens. Environ. 47, 36–44 (1994).
    [CrossRef]
  4. L. Ning, L. S. Daily, W. J. Bower, E. H. Piepmeier, G. A. Strobel, J. B. Callis, “Spectroscopic imaging of water in living plant leaves,” Spectroscopy 11, 34–44 (1996).
  5. U. Schreiber, J. A. Berry, “Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus,” Planta 136, 233–238 (1977).
    [CrossRef]
  6. H. K. Lichtenthaler, U. Rinderle, “Role of chlorophyll fluorescence in the detection of stress conditions of plants,” Crit. Rev. Anal. Chem. 19, 29–85 (1988).
    [CrossRef]
  7. E. W. Chappelle, F. M. Wood, J. E. McMurtrey, W. W. Newcomb, “Laser-induced fluorescence of green plants. 1. A technique for the remote detection of plant stress and species differentiation,” Appl. Opt. 23, 134–138 (1984).
    [CrossRef]
  8. E. W. Chappelle, J. E. McMurtrey, F. M. Wood, W. W. Newcomb, “Laser-induced fluorescence of green plants. 2. LIF changes caused by nutrient deficiencies in corn,” Appl. Opt. 23, 139–134 (1984).
    [CrossRef]
  9. E. W. Chappelle, F. M. Wood, W. W. Newcomb, J. E. McMurtrey, “Laser-induced fluorescence of green plants. 3. LIF spectral signatures of five major plant types,” Appl. Opt. 24, 74–80 (1985).
    [CrossRef] [PubMed]
  10. M. Lang, F. Stober, H. K. Lichtenthaler, “Fluorescence emission spectra of plant leaves and plant constituents,” Radiant Environ. Biophys. 30, 333–347 (1991).
    [CrossRef]
  11. M. Lang, P. Stiffel, Z. Braunova, H. K. Lichtenthaler, “Investigation of the blue–green fluorescence emission of plant leaves,” Bot. Acta 105, 395–468 (1992).
  12. F. Stober, M. Lang, H. K. Lichtenthaler, “Studies on the blue, green, red fluorescence signature of green etiolated and white leaves,” Remote Sens. Environ. 47, 65–71 (1994).
    [CrossRef]
  13. M. Lang, H. K. Lichtenthaler, M. Sowinska, F. Heisel, J. A. Miehe, “Fluorescence imaging of water and temperature stress in plant leaves,” J. Plant Physiol. 148, 613–621 (1996).
    [CrossRef]
  14. W. W. Chappelle, J. E. McMurtrey, M. S. Kim, “Identification of the pigment responsible for the blue fluorescence band in laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis,” Remote Sens. Environ. 36, 213–218 (1991).
    [CrossRef]
  15. H. H. Kim, “New algae mapping technique by the use of an airborne laser fluoresensor,” Appl. Opt. 12, 1454–1459 (1973).
    [CrossRef] [PubMed]
  16. F. E. Hoge, R. N. Swift, J. K. Yungel, “Feasibility of airborne detection of laser induced fluorescence from green plants,” Appl. Opt. 22, 2991–2998 (1983).
    [CrossRef]
  17. G. Cecchi, M. Bazzani, V. Raimond, L. Pantani, “Fluorescence LIDAR in vegetation remote sensing: system features and multiplatform operation,” in Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS ’94 (Institute of Electrical and Electronics Engineers, New York, 1994), pp. 637–639.
  18. K. Omasa, K. I. Shimazaki, I. Aiga, “Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves,” Plant Physiol. 84, 748–752 (1987).
    [CrossRef] [PubMed]
  19. S. Meyer, B. Gentry, “Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging,” Plant Physiol. 116, 947–957 (1998).
    [CrossRef] [PubMed]
  20. C. S. T. Daughtry, J. E. McMurtrey, M. S. Kim, E. W. Chappelle, “Estimating crop residue cover by blue fluorescence imaging,” Remote Sens. Environ. 60, 14–21 (1997).
    [CrossRef]
  21. J. E. McMurtrey, E. W. Chappelle, C. S. T. Daughtry, M. S. Kim, “Fluorescence and reflectance of crop residue and soil,” J. Soil Water Conserv. 48, 207–213 (1993).
  22. H. K. Lichtenthaler, M. Lang, M. Sowinska, F. Heisel, J. A. Miehe, “Detection of vegetation stress via a new high resolution fluorescence imaging system,” J. Plant Physiol. 148, 599–612 (1996).
    [CrossRef]
  23. M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3382, 100–111 (1998).
    [CrossRef]
  24. C. L. Mulchi, B. Rudorff, E. H. Lee, “Morphological responses among crop species to full-season exposures to enhanced concentrations of atmospheric CO2 and O3,” Water, Air, Soil Pollut. 85, 1379–1386 (1995).
  25. M. S. Kim, C. L. Mulchi, C. S. T. Daughtry, E. W. Chappelle, J. E. McMurtrey, “Fluorescence images of soybean leaves grown under increased ozone and carbon dioxide,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3059, 22–31 (1997).
  26. J. Briantais, C. Vernotte, G. H. Krause, E. Weis, “Chlorophyll a fluorescence of higher plants,” in Light Emission by Plants and Bacteria, Govindjee, J. Amesz, D. Fork, eds. (Academic, New York, 1986), pp. 539–583.
  27. S. Malkin, P. A. Armond, H. A. Mooney, D. C. Fork, “Photosystem II photosynthetic unit sizes from fluorescence induction in leaves: correlation to photosynthetic capacity,” Plant Physiol. 67, 570–579 (1981).
    [CrossRef] [PubMed]
  28. L. Guidi, A. Panicucci, G. Lorenzini, G. Soldatini, “Ozone-induced changes in chlorophyll fluorescence kinetics and CO2 assimilation in Vicia faba,” J. Plant Physiol. 141, 545–550 (1993).
    [CrossRef]
  29. L. Guidi, C. Nali, S. Ciompi, G. Lorenzini, G. Soldatini, “The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars,” J. Exp. Botany 48, 173–179 (1997).
    [CrossRef]
  30. C. L. Mulchi, E. H. Lee, K. Tithil, E. V. Onlnick, “Influence of ozone stress on growth processes, yield and grain quality characteristics among soybean cultivars,” Environ. Pollut. 53, 151–169 (1988).
    [CrossRef]

1998 (1)

S. Meyer, B. Gentry, “Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging,” Plant Physiol. 116, 947–957 (1998).
[CrossRef] [PubMed]

1997 (2)

C. S. T. Daughtry, J. E. McMurtrey, M. S. Kim, E. W. Chappelle, “Estimating crop residue cover by blue fluorescence imaging,” Remote Sens. Environ. 60, 14–21 (1997).
[CrossRef]

L. Guidi, C. Nali, S. Ciompi, G. Lorenzini, G. Soldatini, “The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars,” J. Exp. Botany 48, 173–179 (1997).
[CrossRef]

1996 (3)

H. K. Lichtenthaler, M. Lang, M. Sowinska, F. Heisel, J. A. Miehe, “Detection of vegetation stress via a new high resolution fluorescence imaging system,” J. Plant Physiol. 148, 599–612 (1996).
[CrossRef]

L. Ning, L. S. Daily, W. J. Bower, E. H. Piepmeier, G. A. Strobel, J. B. Callis, “Spectroscopic imaging of water in living plant leaves,” Spectroscopy 11, 34–44 (1996).

M. Lang, H. K. Lichtenthaler, M. Sowinska, F. Heisel, J. A. Miehe, “Fluorescence imaging of water and temperature stress in plant leaves,” J. Plant Physiol. 148, 613–621 (1996).
[CrossRef]

1995 (1)

C. L. Mulchi, B. Rudorff, E. H. Lee, “Morphological responses among crop species to full-season exposures to enhanced concentrations of atmospheric CO2 and O3,” Water, Air, Soil Pollut. 85, 1379–1386 (1995).

1994 (2)

J. E. McMurtrey, E. W. Chappelle, M. S. Kim, L. A. Corp, “Distinguishing nitrogen fertilization levels in field corn (Zea mays L) with actively induced fluorescence and passive reflectance measurements,” Remote Sens. Environ. 47, 36–44 (1994).
[CrossRef]

F. Stober, M. Lang, H. K. Lichtenthaler, “Studies on the blue, green, red fluorescence signature of green etiolated and white leaves,” Remote Sens. Environ. 47, 65–71 (1994).
[CrossRef]

1993 (2)

L. Guidi, A. Panicucci, G. Lorenzini, G. Soldatini, “Ozone-induced changes in chlorophyll fluorescence kinetics and CO2 assimilation in Vicia faba,” J. Plant Physiol. 141, 545–550 (1993).
[CrossRef]

J. E. McMurtrey, E. W. Chappelle, C. S. T. Daughtry, M. S. Kim, “Fluorescence and reflectance of crop residue and soil,” J. Soil Water Conserv. 48, 207–213 (1993).

1992 (2)

E. W. Chappelle, M. S. Kim, J. E. McMurtrey, “Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids,” Remote Sens. Environ. 37, 121–128 (1992).

M. Lang, P. Stiffel, Z. Braunova, H. K. Lichtenthaler, “Investigation of the blue–green fluorescence emission of plant leaves,” Bot. Acta 105, 395–468 (1992).

1991 (2)

M. Lang, F. Stober, H. K. Lichtenthaler, “Fluorescence emission spectra of plant leaves and plant constituents,” Radiant Environ. Biophys. 30, 333–347 (1991).
[CrossRef]

W. W. Chappelle, J. E. McMurtrey, M. S. Kim, “Identification of the pigment responsible for the blue fluorescence band in laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis,” Remote Sens. Environ. 36, 213–218 (1991).
[CrossRef]

1990 (1)

B. Yode, L. S. Daley, “Development of a visible spectroscopic method for determining chlorophyll a and b in vivo in leaf samples,” Spectroscopy 5, 44–50 (1990).

1988 (2)

H. K. Lichtenthaler, U. Rinderle, “Role of chlorophyll fluorescence in the detection of stress conditions of plants,” Crit. Rev. Anal. Chem. 19, 29–85 (1988).
[CrossRef]

C. L. Mulchi, E. H. Lee, K. Tithil, E. V. Onlnick, “Influence of ozone stress on growth processes, yield and grain quality characteristics among soybean cultivars,” Environ. Pollut. 53, 151–169 (1988).
[CrossRef]

1987 (1)

K. Omasa, K. I. Shimazaki, I. Aiga, “Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves,” Plant Physiol. 84, 748–752 (1987).
[CrossRef] [PubMed]

1985 (1)

1984 (2)

1983 (1)

1981 (1)

S. Malkin, P. A. Armond, H. A. Mooney, D. C. Fork, “Photosystem II photosynthetic unit sizes from fluorescence induction in leaves: correlation to photosynthetic capacity,” Plant Physiol. 67, 570–579 (1981).
[CrossRef] [PubMed]

1977 (1)

U. Schreiber, J. A. Berry, “Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus,” Planta 136, 233–238 (1977).
[CrossRef]

1973 (1)

Aiga, I.

K. Omasa, K. I. Shimazaki, I. Aiga, “Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves,” Plant Physiol. 84, 748–752 (1987).
[CrossRef] [PubMed]

Armond, P. A.

S. Malkin, P. A. Armond, H. A. Mooney, D. C. Fork, “Photosystem II photosynthetic unit sizes from fluorescence induction in leaves: correlation to photosynthetic capacity,” Plant Physiol. 67, 570–579 (1981).
[CrossRef] [PubMed]

Bazzani, M.

G. Cecchi, M. Bazzani, V. Raimond, L. Pantani, “Fluorescence LIDAR in vegetation remote sensing: system features and multiplatform operation,” in Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS ’94 (Institute of Electrical and Electronics Engineers, New York, 1994), pp. 637–639.

Berry, J. A.

U. Schreiber, J. A. Berry, “Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus,” Planta 136, 233–238 (1977).
[CrossRef]

Bower, W. J.

L. Ning, L. S. Daily, W. J. Bower, E. H. Piepmeier, G. A. Strobel, J. B. Callis, “Spectroscopic imaging of water in living plant leaves,” Spectroscopy 11, 34–44 (1996).

Braunova, Z.

M. Lang, P. Stiffel, Z. Braunova, H. K. Lichtenthaler, “Investigation of the blue–green fluorescence emission of plant leaves,” Bot. Acta 105, 395–468 (1992).

Briantais, J.

J. Briantais, C. Vernotte, G. H. Krause, E. Weis, “Chlorophyll a fluorescence of higher plants,” in Light Emission by Plants and Bacteria, Govindjee, J. Amesz, D. Fork, eds. (Academic, New York, 1986), pp. 539–583.

Callis, J. B.

L. Ning, L. S. Daily, W. J. Bower, E. H. Piepmeier, G. A. Strobel, J. B. Callis, “Spectroscopic imaging of water in living plant leaves,” Spectroscopy 11, 34–44 (1996).

Cecchi, G.

G. Cecchi, M. Bazzani, V. Raimond, L. Pantani, “Fluorescence LIDAR in vegetation remote sensing: system features and multiplatform operation,” in Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS ’94 (Institute of Electrical and Electronics Engineers, New York, 1994), pp. 637–639.

Chappelle, E. W.

C. S. T. Daughtry, J. E. McMurtrey, M. S. Kim, E. W. Chappelle, “Estimating crop residue cover by blue fluorescence imaging,” Remote Sens. Environ. 60, 14–21 (1997).
[CrossRef]

J. E. McMurtrey, E. W. Chappelle, M. S. Kim, L. A. Corp, “Distinguishing nitrogen fertilization levels in field corn (Zea mays L) with actively induced fluorescence and passive reflectance measurements,” Remote Sens. Environ. 47, 36–44 (1994).
[CrossRef]

J. E. McMurtrey, E. W. Chappelle, C. S. T. Daughtry, M. S. Kim, “Fluorescence and reflectance of crop residue and soil,” J. Soil Water Conserv. 48, 207–213 (1993).

E. W. Chappelle, M. S. Kim, J. E. McMurtrey, “Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids,” Remote Sens. Environ. 37, 121–128 (1992).

E. W. Chappelle, F. M. Wood, W. W. Newcomb, J. E. McMurtrey, “Laser-induced fluorescence of green plants. 3. LIF spectral signatures of five major plant types,” Appl. Opt. 24, 74–80 (1985).
[CrossRef] [PubMed]

E. W. Chappelle, F. M. Wood, J. E. McMurtrey, W. W. Newcomb, “Laser-induced fluorescence of green plants. 1. A technique for the remote detection of plant stress and species differentiation,” Appl. Opt. 23, 134–138 (1984).
[CrossRef]

E. W. Chappelle, J. E. McMurtrey, F. M. Wood, W. W. Newcomb, “Laser-induced fluorescence of green plants. 2. LIF changes caused by nutrient deficiencies in corn,” Appl. Opt. 23, 139–134 (1984).
[CrossRef]

M. S. Kim, C. L. Mulchi, C. S. T. Daughtry, E. W. Chappelle, J. E. McMurtrey, “Fluorescence images of soybean leaves grown under increased ozone and carbon dioxide,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3059, 22–31 (1997).

Chappelle, W. W.

W. W. Chappelle, J. E. McMurtrey, M. S. Kim, “Identification of the pigment responsible for the blue fluorescence band in laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis,” Remote Sens. Environ. 36, 213–218 (1991).
[CrossRef]

Ciompi, S.

L. Guidi, C. Nali, S. Ciompi, G. Lorenzini, G. Soldatini, “The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars,” J. Exp. Botany 48, 173–179 (1997).
[CrossRef]

Corp, L. A.

J. E. McMurtrey, E. W. Chappelle, M. S. Kim, L. A. Corp, “Distinguishing nitrogen fertilization levels in field corn (Zea mays L) with actively induced fluorescence and passive reflectance measurements,” Remote Sens. Environ. 47, 36–44 (1994).
[CrossRef]

Daily, L. S.

L. Ning, L. S. Daily, W. J. Bower, E. H. Piepmeier, G. A. Strobel, J. B. Callis, “Spectroscopic imaging of water in living plant leaves,” Spectroscopy 11, 34–44 (1996).

Daley, L. S.

B. Yode, L. S. Daley, “Development of a visible spectroscopic method for determining chlorophyll a and b in vivo in leaf samples,” Spectroscopy 5, 44–50 (1990).

Daughtry, C. S. T.

C. S. T. Daughtry, J. E. McMurtrey, M. S. Kim, E. W. Chappelle, “Estimating crop residue cover by blue fluorescence imaging,” Remote Sens. Environ. 60, 14–21 (1997).
[CrossRef]

J. E. McMurtrey, E. W. Chappelle, C. S. T. Daughtry, M. S. Kim, “Fluorescence and reflectance of crop residue and soil,” J. Soil Water Conserv. 48, 207–213 (1993).

M. S. Kim, C. L. Mulchi, C. S. T. Daughtry, E. W. Chappelle, J. E. McMurtrey, “Fluorescence images of soybean leaves grown under increased ozone and carbon dioxide,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3059, 22–31 (1997).

Decker, T.

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3382, 100–111 (1998).
[CrossRef]

Eckert, C.

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3382, 100–111 (1998).
[CrossRef]

Fork, D. C.

S. Malkin, P. A. Armond, H. A. Mooney, D. C. Fork, “Photosystem II photosynthetic unit sizes from fluorescence induction in leaves: correlation to photosynthetic capacity,” Plant Physiol. 67, 570–579 (1981).
[CrossRef] [PubMed]

Gentry, B.

S. Meyer, B. Gentry, “Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging,” Plant Physiol. 116, 947–957 (1998).
[CrossRef] [PubMed]

Guidi, L.

L. Guidi, C. Nali, S. Ciompi, G. Lorenzini, G. Soldatini, “The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars,” J. Exp. Botany 48, 173–179 (1997).
[CrossRef]

L. Guidi, A. Panicucci, G. Lorenzini, G. Soldatini, “Ozone-induced changes in chlorophyll fluorescence kinetics and CO2 assimilation in Vicia faba,” J. Plant Physiol. 141, 545–550 (1993).
[CrossRef]

Heisel, F.

M. Lang, H. K. Lichtenthaler, M. Sowinska, F. Heisel, J. A. Miehe, “Fluorescence imaging of water and temperature stress in plant leaves,” J. Plant Physiol. 148, 613–621 (1996).
[CrossRef]

H. K. Lichtenthaler, M. Lang, M. Sowinska, F. Heisel, J. A. Miehe, “Detection of vegetation stress via a new high resolution fluorescence imaging system,” J. Plant Physiol. 148, 599–612 (1996).
[CrossRef]

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3382, 100–111 (1998).
[CrossRef]

Hoge, F. E.

Kim, H. H.

Kim, M. S.

C. S. T. Daughtry, J. E. McMurtrey, M. S. Kim, E. W. Chappelle, “Estimating crop residue cover by blue fluorescence imaging,” Remote Sens. Environ. 60, 14–21 (1997).
[CrossRef]

J. E. McMurtrey, E. W. Chappelle, M. S. Kim, L. A. Corp, “Distinguishing nitrogen fertilization levels in field corn (Zea mays L) with actively induced fluorescence and passive reflectance measurements,” Remote Sens. Environ. 47, 36–44 (1994).
[CrossRef]

J. E. McMurtrey, E. W. Chappelle, C. S. T. Daughtry, M. S. Kim, “Fluorescence and reflectance of crop residue and soil,” J. Soil Water Conserv. 48, 207–213 (1993).

E. W. Chappelle, M. S. Kim, J. E. McMurtrey, “Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids,” Remote Sens. Environ. 37, 121–128 (1992).

W. W. Chappelle, J. E. McMurtrey, M. S. Kim, “Identification of the pigment responsible for the blue fluorescence band in laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis,” Remote Sens. Environ. 36, 213–218 (1991).
[CrossRef]

M. S. Kim, C. L. Mulchi, C. S. T. Daughtry, E. W. Chappelle, J. E. McMurtrey, “Fluorescence images of soybean leaves grown under increased ozone and carbon dioxide,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3059, 22–31 (1997).

Krause, G. H.

J. Briantais, C. Vernotte, G. H. Krause, E. Weis, “Chlorophyll a fluorescence of higher plants,” in Light Emission by Plants and Bacteria, Govindjee, J. Amesz, D. Fork, eds. (Academic, New York, 1986), pp. 539–583.

Lang, M.

H. K. Lichtenthaler, M. Lang, M. Sowinska, F. Heisel, J. A. Miehe, “Detection of vegetation stress via a new high resolution fluorescence imaging system,” J. Plant Physiol. 148, 599–612 (1996).
[CrossRef]

M. Lang, H. K. Lichtenthaler, M. Sowinska, F. Heisel, J. A. Miehe, “Fluorescence imaging of water and temperature stress in plant leaves,” J. Plant Physiol. 148, 613–621 (1996).
[CrossRef]

F. Stober, M. Lang, H. K. Lichtenthaler, “Studies on the blue, green, red fluorescence signature of green etiolated and white leaves,” Remote Sens. Environ. 47, 65–71 (1994).
[CrossRef]

M. Lang, P. Stiffel, Z. Braunova, H. K. Lichtenthaler, “Investigation of the blue–green fluorescence emission of plant leaves,” Bot. Acta 105, 395–468 (1992).

M. Lang, F. Stober, H. K. Lichtenthaler, “Fluorescence emission spectra of plant leaves and plant constituents,” Radiant Environ. Biophys. 30, 333–347 (1991).
[CrossRef]

Lee, E. H.

C. L. Mulchi, B. Rudorff, E. H. Lee, “Morphological responses among crop species to full-season exposures to enhanced concentrations of atmospheric CO2 and O3,” Water, Air, Soil Pollut. 85, 1379–1386 (1995).

C. L. Mulchi, E. H. Lee, K. Tithil, E. V. Onlnick, “Influence of ozone stress on growth processes, yield and grain quality characteristics among soybean cultivars,” Environ. Pollut. 53, 151–169 (1988).
[CrossRef]

Lichtenthaler, H. K.

H. K. Lichtenthaler, M. Lang, M. Sowinska, F. Heisel, J. A. Miehe, “Detection of vegetation stress via a new high resolution fluorescence imaging system,” J. Plant Physiol. 148, 599–612 (1996).
[CrossRef]

M. Lang, H. K. Lichtenthaler, M. Sowinska, F. Heisel, J. A. Miehe, “Fluorescence imaging of water and temperature stress in plant leaves,” J. Plant Physiol. 148, 613–621 (1996).
[CrossRef]

F. Stober, M. Lang, H. K. Lichtenthaler, “Studies on the blue, green, red fluorescence signature of green etiolated and white leaves,” Remote Sens. Environ. 47, 65–71 (1994).
[CrossRef]

M. Lang, P. Stiffel, Z. Braunova, H. K. Lichtenthaler, “Investigation of the blue–green fluorescence emission of plant leaves,” Bot. Acta 105, 395–468 (1992).

M. Lang, F. Stober, H. K. Lichtenthaler, “Fluorescence emission spectra of plant leaves and plant constituents,” Radiant Environ. Biophys. 30, 333–347 (1991).
[CrossRef]

H. K. Lichtenthaler, U. Rinderle, “Role of chlorophyll fluorescence in the detection of stress conditions of plants,” Crit. Rev. Anal. Chem. 19, 29–85 (1988).
[CrossRef]

Lorenzini, G.

L. Guidi, C. Nali, S. Ciompi, G. Lorenzini, G. Soldatini, “The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars,” J. Exp. Botany 48, 173–179 (1997).
[CrossRef]

L. Guidi, A. Panicucci, G. Lorenzini, G. Soldatini, “Ozone-induced changes in chlorophyll fluorescence kinetics and CO2 assimilation in Vicia faba,” J. Plant Physiol. 141, 545–550 (1993).
[CrossRef]

Malkin, S.

S. Malkin, P. A. Armond, H. A. Mooney, D. C. Fork, “Photosystem II photosynthetic unit sizes from fluorescence induction in leaves: correlation to photosynthetic capacity,” Plant Physiol. 67, 570–579 (1981).
[CrossRef] [PubMed]

McMurtrey, J. E.

C. S. T. Daughtry, J. E. McMurtrey, M. S. Kim, E. W. Chappelle, “Estimating crop residue cover by blue fluorescence imaging,” Remote Sens. Environ. 60, 14–21 (1997).
[CrossRef]

J. E. McMurtrey, E. W. Chappelle, M. S. Kim, L. A. Corp, “Distinguishing nitrogen fertilization levels in field corn (Zea mays L) with actively induced fluorescence and passive reflectance measurements,” Remote Sens. Environ. 47, 36–44 (1994).
[CrossRef]

J. E. McMurtrey, E. W. Chappelle, C. S. T. Daughtry, M. S. Kim, “Fluorescence and reflectance of crop residue and soil,” J. Soil Water Conserv. 48, 207–213 (1993).

E. W. Chappelle, M. S. Kim, J. E. McMurtrey, “Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids,” Remote Sens. Environ. 37, 121–128 (1992).

W. W. Chappelle, J. E. McMurtrey, M. S. Kim, “Identification of the pigment responsible for the blue fluorescence band in laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis,” Remote Sens. Environ. 36, 213–218 (1991).
[CrossRef]

E. W. Chappelle, F. M. Wood, W. W. Newcomb, J. E. McMurtrey, “Laser-induced fluorescence of green plants. 3. LIF spectral signatures of five major plant types,” Appl. Opt. 24, 74–80 (1985).
[CrossRef] [PubMed]

E. W. Chappelle, F. M. Wood, J. E. McMurtrey, W. W. Newcomb, “Laser-induced fluorescence of green plants. 1. A technique for the remote detection of plant stress and species differentiation,” Appl. Opt. 23, 134–138 (1984).
[CrossRef]

E. W. Chappelle, J. E. McMurtrey, F. M. Wood, W. W. Newcomb, “Laser-induced fluorescence of green plants. 2. LIF changes caused by nutrient deficiencies in corn,” Appl. Opt. 23, 139–134 (1984).
[CrossRef]

M. S. Kim, C. L. Mulchi, C. S. T. Daughtry, E. W. Chappelle, J. E. McMurtrey, “Fluorescence images of soybean leaves grown under increased ozone and carbon dioxide,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3059, 22–31 (1997).

Meyer, S.

S. Meyer, B. Gentry, “Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging,” Plant Physiol. 116, 947–957 (1998).
[CrossRef] [PubMed]

Miehe, J.

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3382, 100–111 (1998).
[CrossRef]

Miehe, J. A.

M. Lang, H. K. Lichtenthaler, M. Sowinska, F. Heisel, J. A. Miehe, “Fluorescence imaging of water and temperature stress in plant leaves,” J. Plant Physiol. 148, 613–621 (1996).
[CrossRef]

H. K. Lichtenthaler, M. Lang, M. Sowinska, F. Heisel, J. A. Miehe, “Detection of vegetation stress via a new high resolution fluorescence imaging system,” J. Plant Physiol. 148, 599–612 (1996).
[CrossRef]

Mooney, H. A.

S. Malkin, P. A. Armond, H. A. Mooney, D. C. Fork, “Photosystem II photosynthetic unit sizes from fluorescence induction in leaves: correlation to photosynthetic capacity,” Plant Physiol. 67, 570–579 (1981).
[CrossRef] [PubMed]

Mulchi, C. L.

C. L. Mulchi, B. Rudorff, E. H. Lee, “Morphological responses among crop species to full-season exposures to enhanced concentrations of atmospheric CO2 and O3,” Water, Air, Soil Pollut. 85, 1379–1386 (1995).

C. L. Mulchi, E. H. Lee, K. Tithil, E. V. Onlnick, “Influence of ozone stress on growth processes, yield and grain quality characteristics among soybean cultivars,” Environ. Pollut. 53, 151–169 (1988).
[CrossRef]

M. S. Kim, C. L. Mulchi, C. S. T. Daughtry, E. W. Chappelle, J. E. McMurtrey, “Fluorescence images of soybean leaves grown under increased ozone and carbon dioxide,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3059, 22–31 (1997).

Nali, C.

L. Guidi, C. Nali, S. Ciompi, G. Lorenzini, G. Soldatini, “The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars,” J. Exp. Botany 48, 173–179 (1997).
[CrossRef]

Newcomb, W. W.

Ning, L.

L. Ning, L. S. Daily, W. J. Bower, E. H. Piepmeier, G. A. Strobel, J. B. Callis, “Spectroscopic imaging of water in living plant leaves,” Spectroscopy 11, 34–44 (1996).

Omasa, K.

K. Omasa, K. I. Shimazaki, I. Aiga, “Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves,” Plant Physiol. 84, 748–752 (1987).
[CrossRef] [PubMed]

Onlnick, E. V.

C. L. Mulchi, E. H. Lee, K. Tithil, E. V. Onlnick, “Influence of ozone stress on growth processes, yield and grain quality characteristics among soybean cultivars,” Environ. Pollut. 53, 151–169 (1988).
[CrossRef]

Panicucci, A.

L. Guidi, A. Panicucci, G. Lorenzini, G. Soldatini, “Ozone-induced changes in chlorophyll fluorescence kinetics and CO2 assimilation in Vicia faba,” J. Plant Physiol. 141, 545–550 (1993).
[CrossRef]

Pantani, L.

G. Cecchi, M. Bazzani, V. Raimond, L. Pantani, “Fluorescence LIDAR in vegetation remote sensing: system features and multiplatform operation,” in Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS ’94 (Institute of Electrical and Electronics Engineers, New York, 1994), pp. 637–639.

Piepmeier, E. H.

L. Ning, L. S. Daily, W. J. Bower, E. H. Piepmeier, G. A. Strobel, J. B. Callis, “Spectroscopic imaging of water in living plant leaves,” Spectroscopy 11, 34–44 (1996).

Raimond, V.

G. Cecchi, M. Bazzani, V. Raimond, L. Pantani, “Fluorescence LIDAR in vegetation remote sensing: system features and multiplatform operation,” in Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS ’94 (Institute of Electrical and Electronics Engineers, New York, 1994), pp. 637–639.

Rinderle, U.

H. K. Lichtenthaler, U. Rinderle, “Role of chlorophyll fluorescence in the detection of stress conditions of plants,” Crit. Rev. Anal. Chem. 19, 29–85 (1988).
[CrossRef]

Rudorff, B.

C. L. Mulchi, B. Rudorff, E. H. Lee, “Morphological responses among crop species to full-season exposures to enhanced concentrations of atmospheric CO2 and O3,” Water, Air, Soil Pollut. 85, 1379–1386 (1995).

Schreiber, U.

U. Schreiber, J. A. Berry, “Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus,” Planta 136, 233–238 (1977).
[CrossRef]

Shimazaki, K. I.

K. Omasa, K. I. Shimazaki, I. Aiga, “Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves,” Plant Physiol. 84, 748–752 (1987).
[CrossRef] [PubMed]

Soldatini, G.

L. Guidi, C. Nali, S. Ciompi, G. Lorenzini, G. Soldatini, “The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars,” J. Exp. Botany 48, 173–179 (1997).
[CrossRef]

L. Guidi, A. Panicucci, G. Lorenzini, G. Soldatini, “Ozone-induced changes in chlorophyll fluorescence kinetics and CO2 assimilation in Vicia faba,” J. Plant Physiol. 141, 545–550 (1993).
[CrossRef]

Sowinska, M.

M. Lang, H. K. Lichtenthaler, M. Sowinska, F. Heisel, J. A. Miehe, “Fluorescence imaging of water and temperature stress in plant leaves,” J. Plant Physiol. 148, 613–621 (1996).
[CrossRef]

H. K. Lichtenthaler, M. Lang, M. Sowinska, F. Heisel, J. A. Miehe, “Detection of vegetation stress via a new high resolution fluorescence imaging system,” J. Plant Physiol. 148, 599–612 (1996).
[CrossRef]

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3382, 100–111 (1998).
[CrossRef]

Stiffel, P.

M. Lang, P. Stiffel, Z. Braunova, H. K. Lichtenthaler, “Investigation of the blue–green fluorescence emission of plant leaves,” Bot. Acta 105, 395–468 (1992).

Stober, F.

F. Stober, M. Lang, H. K. Lichtenthaler, “Studies on the blue, green, red fluorescence signature of green etiolated and white leaves,” Remote Sens. Environ. 47, 65–71 (1994).
[CrossRef]

M. Lang, F. Stober, H. K. Lichtenthaler, “Fluorescence emission spectra of plant leaves and plant constituents,” Radiant Environ. Biophys. 30, 333–347 (1991).
[CrossRef]

Strobel, G. A.

L. Ning, L. S. Daily, W. J. Bower, E. H. Piepmeier, G. A. Strobel, J. B. Callis, “Spectroscopic imaging of water in living plant leaves,” Spectroscopy 11, 34–44 (1996).

Swift, R. N.

Tithil, K.

C. L. Mulchi, E. H. Lee, K. Tithil, E. V. Onlnick, “Influence of ozone stress on growth processes, yield and grain quality characteristics among soybean cultivars,” Environ. Pollut. 53, 151–169 (1988).
[CrossRef]

Valcke, R.

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3382, 100–111 (1998).
[CrossRef]

Vernotte, C.

J. Briantais, C. Vernotte, G. H. Krause, E. Weis, “Chlorophyll a fluorescence of higher plants,” in Light Emission by Plants and Bacteria, Govindjee, J. Amesz, D. Fork, eds. (Academic, New York, 1986), pp. 539–583.

Weis, E.

J. Briantais, C. Vernotte, G. H. Krause, E. Weis, “Chlorophyll a fluorescence of higher plants,” in Light Emission by Plants and Bacteria, Govindjee, J. Amesz, D. Fork, eds. (Academic, New York, 1986), pp. 539–583.

Wood, F. M.

Yode, B.

B. Yode, L. S. Daley, “Development of a visible spectroscopic method for determining chlorophyll a and b in vivo in leaf samples,” Spectroscopy 5, 44–50 (1990).

Yungel, J. K.

Appl. Opt. (5)

Bot. Acta (1)

M. Lang, P. Stiffel, Z. Braunova, H. K. Lichtenthaler, “Investigation of the blue–green fluorescence emission of plant leaves,” Bot. Acta 105, 395–468 (1992).

Crit. Rev. Anal. Chem. (1)

H. K. Lichtenthaler, U. Rinderle, “Role of chlorophyll fluorescence in the detection of stress conditions of plants,” Crit. Rev. Anal. Chem. 19, 29–85 (1988).
[CrossRef]

Environ. Pollut. (1)

C. L. Mulchi, E. H. Lee, K. Tithil, E. V. Onlnick, “Influence of ozone stress on growth processes, yield and grain quality characteristics among soybean cultivars,” Environ. Pollut. 53, 151–169 (1988).
[CrossRef]

J. Exp. Botany (1)

L. Guidi, C. Nali, S. Ciompi, G. Lorenzini, G. Soldatini, “The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars,” J. Exp. Botany 48, 173–179 (1997).
[CrossRef]

J. Plant Physiol. (3)

L. Guidi, A. Panicucci, G. Lorenzini, G. Soldatini, “Ozone-induced changes in chlorophyll fluorescence kinetics and CO2 assimilation in Vicia faba,” J. Plant Physiol. 141, 545–550 (1993).
[CrossRef]

H. K. Lichtenthaler, M. Lang, M. Sowinska, F. Heisel, J. A. Miehe, “Detection of vegetation stress via a new high resolution fluorescence imaging system,” J. Plant Physiol. 148, 599–612 (1996).
[CrossRef]

M. Lang, H. K. Lichtenthaler, M. Sowinska, F. Heisel, J. A. Miehe, “Fluorescence imaging of water and temperature stress in plant leaves,” J. Plant Physiol. 148, 613–621 (1996).
[CrossRef]

J. Soil Water Conserv. (1)

J. E. McMurtrey, E. W. Chappelle, C. S. T. Daughtry, M. S. Kim, “Fluorescence and reflectance of crop residue and soil,” J. Soil Water Conserv. 48, 207–213 (1993).

Plant Physiol. (3)

S. Malkin, P. A. Armond, H. A. Mooney, D. C. Fork, “Photosystem II photosynthetic unit sizes from fluorescence induction in leaves: correlation to photosynthetic capacity,” Plant Physiol. 67, 570–579 (1981).
[CrossRef] [PubMed]

K. Omasa, K. I. Shimazaki, I. Aiga, “Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves,” Plant Physiol. 84, 748–752 (1987).
[CrossRef] [PubMed]

S. Meyer, B. Gentry, “Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging,” Plant Physiol. 116, 947–957 (1998).
[CrossRef] [PubMed]

Planta (1)

U. Schreiber, J. A. Berry, “Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus,” Planta 136, 233–238 (1977).
[CrossRef]

Radiant Environ. Biophys. (1)

M. Lang, F. Stober, H. K. Lichtenthaler, “Fluorescence emission spectra of plant leaves and plant constituents,” Radiant Environ. Biophys. 30, 333–347 (1991).
[CrossRef]

Remote Sens. Environ. (5)

F. Stober, M. Lang, H. K. Lichtenthaler, “Studies on the blue, green, red fluorescence signature of green etiolated and white leaves,” Remote Sens. Environ. 47, 65–71 (1994).
[CrossRef]

W. W. Chappelle, J. E. McMurtrey, M. S. Kim, “Identification of the pigment responsible for the blue fluorescence band in laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis,” Remote Sens. Environ. 36, 213–218 (1991).
[CrossRef]

E. W. Chappelle, M. S. Kim, J. E. McMurtrey, “Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids,” Remote Sens. Environ. 37, 121–128 (1992).

J. E. McMurtrey, E. W. Chappelle, M. S. Kim, L. A. Corp, “Distinguishing nitrogen fertilization levels in field corn (Zea mays L) with actively induced fluorescence and passive reflectance measurements,” Remote Sens. Environ. 47, 36–44 (1994).
[CrossRef]

C. S. T. Daughtry, J. E. McMurtrey, M. S. Kim, E. W. Chappelle, “Estimating crop residue cover by blue fluorescence imaging,” Remote Sens. Environ. 60, 14–21 (1997).
[CrossRef]

Spectroscopy (2)

L. Ning, L. S. Daily, W. J. Bower, E. H. Piepmeier, G. A. Strobel, J. B. Callis, “Spectroscopic imaging of water in living plant leaves,” Spectroscopy 11, 34–44 (1996).

B. Yode, L. S. Daley, “Development of a visible spectroscopic method for determining chlorophyll a and b in vivo in leaf samples,” Spectroscopy 5, 44–50 (1990).

Water, Air, Soil Pollut. (1)

C. L. Mulchi, B. Rudorff, E. H. Lee, “Morphological responses among crop species to full-season exposures to enhanced concentrations of atmospheric CO2 and O3,” Water, Air, Soil Pollut. 85, 1379–1386 (1995).

Other (4)

M. S. Kim, C. L. Mulchi, C. S. T. Daughtry, E. W. Chappelle, J. E. McMurtrey, “Fluorescence images of soybean leaves grown under increased ozone and carbon dioxide,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3059, 22–31 (1997).

J. Briantais, C. Vernotte, G. H. Krause, E. Weis, “Chlorophyll a fluorescence of higher plants,” in Light Emission by Plants and Bacteria, Govindjee, J. Amesz, D. Fork, eds. (Academic, New York, 1986), pp. 539–583.

M. Sowinska, T. Decker, C. Eckert, F. Heisel, R. Valcke, J. Miehe, “Evaluation of nitrogen fertilization effect on apple-tree leaves and fruit by fluorescence imaging,” in Advances in Laser Remote Sensing for Terrestrial and Hydrographic Applications, R. M. Narayanan, J. E. Kalshoven, eds., Proc. SPIE3382, 100–111 (1998).
[CrossRef]

G. Cecchi, M. Bazzani, V. Raimond, L. Pantani, “Fluorescence LIDAR in vegetation remote sensing: system features and multiplatform operation,” in Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS ’94 (Institute of Electrical and Electronics Engineers, New York, 1994), pp. 637–639.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Transmittance of fluorescence imaging system filters shown on top of a typical fluorescence emission spectrum (shaded area) of a soybean leaf under UV excitation.

Fig. 2
Fig. 2

Fluorescence images of soybean leaves: (a) adaxial surface at F450, (b) abaxial at F450, (c) adaxial at F550, and (d) abaxial at F550. Within each image, fluorescence intensity variations across the leaf (dotted line) are shown in the graph.

Fig. 3
Fig. 3

Fluorescence images of soybean leaves: (a) adaxial surface at F680, (b) abaxial at F680, (c) adaxial at F740, and (d) abaxial at F740. Within each image, fluorescence intensity variations across the leaf (dotted line) are shown in the graph below.

Fig. 4
Fig. 4

Fluorescence ratio images of soybean leaves: (a) F450/F550, (b) F680/F740, (c) F450/F680, and (d) F550/F680. Images in the left-hand column represent ratios of the adaxial surface, and images on the right-hand column are those of the abaxial surface. The same gray scales are used for adaxial and abaxial surfaces within each of the ratios.

Fig. 5
Fig. 5

Histogram of adaxial and abaxial surfaces of soybean (cv. Essex) leaf fluorescence images at (a) F450, (b) F550, (c) F680, and (d) F740. The vertical axis is the frequency of the pixels with each RFI value.

Fig. 6
Fig. 6

Chlorophyll fluorescence images of adaxial surfaces of soybean (cv. Essex) leaves treated with DCMU: (a) petiole kept immersed in DCMU solution for 6 h; (b) exogenous application on the abaxial side. From left to right, images acquired at F680, F740, and ratio images of F680/F740. Relative fluorescence intensity and ratio values are given in vertical color scales.

Fig. 7
Fig. 7

Short-term effects of moderately elevated O3 on fluorescence responses of soybean (cv. Forrest). Within each image, two leaves on the left-hand side were grown in control chambers. Likewise, leaves on the right-hand side within each image are those grown in an elevated O3 environment.

Tables (2)

Tables Icon

Table 1 Descriptive Statistics from Multispectral Fluorescence Images for Adaxial and Abaxial Surfaces of Soybean Leaves (cv. Essex)

Tables Icon

Table 2 Effects of Short-Term Elevated O3 Treatment on RFI and Fluorescence Ratios of Soybean (cv. Forrest) Plantsa,b

Metrics