Abstract

A new, to our knowledge, method for measuring the wavelength dependence of the transit time, material dispersion, and attenuation of an optical fiber is described. We inject light from a 4-ns rise-time pulsed broadband flash lamp into fibers of various lengths and record the transmitted signals with a time-resolved spectrograph. Segments of data spanning a range of approximately 3000 Å are recorded from a single flash-lamp pulse. Comparison of data acquired with short and long fibers enables the determination of the transit time and the material dispersion as functions of wavelength dependence for the entire recorded spectrum simultaneously. The wavelength-dependent attenuation is also determined from the signal intensities. The method is demonstrated with experiments using a step-index 200-µm-diameter SiO2 fiber. The results agree with the transit time determined from the bulk glass refractive index to within ±0.035% for the visible (4000–7200-Å) spectrum and 0.12% for the UV (2650–4000-Å) spectrum and with the attenuation specified by the fiber manufacturer to within ±10%.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Bailey, R. Adams, A. Carlson, C. H. Ching, A. B. Filuk, P. Lake, “High-accuracy time- and space-resolved Stark shift measurements (invited),” Rev. Sci. Instrum. 68, 1009–1014 (1997).
    [CrossRef]
  2. J. E. Bailey, J. R. Asay, M. A. Bernard, A. Carlson, G. A. Chandler, C. A. Hall, D. L. Hanson, R. R. Johnston, P. Lake, “Optical spectroscopy measurements of shock waves driven by intense z-pinch radiation,” J. Quant. Spectrosc. Radiat. Transfer 65, 31–42 (2000).
    [CrossRef]
  3. D. Marcuse, Principles of Optical Fiber Measurement (Academic, New York, 1981).
  4. “Model 207 0.67 meter scanning monochromator” (McPherson, a division of Scientific Instruments Corps., Acton, Mass., 1987).
  5. D. Marcuse, “Pulse distortion in single-mode fibers,” Appl. Opt. 19, 1653–1660 (1980).
    [CrossRef] [PubMed]
  6. R. Olshansky, D. B. Keck, “Pulse broadening in graded-index optical fibers,” Appl. Opt. 15, 483–491 (1976).
    [CrossRef] [PubMed]
  7. W. Eickhoff, E. Weidel, “Measuring method for the refractive index profile of optical glass fibers,” Opt. Quantum Electron. 7, 109–113 (1975).
    [CrossRef]
  8. C. Yeh, Handbook of Fiber Optics Theory and Applications (Academic, New York, 1989).
  9. G. Cancellieri, U. Raviaoli, Measurements of Optical Fibers and Devices: Theory and Experiments (Artech House, Norwood, Mass., 1984).
  10. J. Midwinter, Optical Fibers for Transmission (Wiley, New York, 1979).
  11. The Book on the Technologies of Polymicro (Polymicro Technologies, LLC., Phoenix, Ariz., 1999).
  12. Nanopulser Model 437B Operating Manual (Xenon Corp., Wilmington, Mass., 1986).
  13. Tektronix 640A TDS Family Digitizing Oscilloscopes, Tektronix Inc., Wilsonville, Oreg., 1995.
  14. Heraeus Quartz, “Fused quartz and fused silica for optics,” brochure (Herasil Amersil Inc., Buford, Ga., 1979).

2000 (1)

J. E. Bailey, J. R. Asay, M. A. Bernard, A. Carlson, G. A. Chandler, C. A. Hall, D. L. Hanson, R. R. Johnston, P. Lake, “Optical spectroscopy measurements of shock waves driven by intense z-pinch radiation,” J. Quant. Spectrosc. Radiat. Transfer 65, 31–42 (2000).
[CrossRef]

1997 (1)

J. E. Bailey, R. Adams, A. Carlson, C. H. Ching, A. B. Filuk, P. Lake, “High-accuracy time- and space-resolved Stark shift measurements (invited),” Rev. Sci. Instrum. 68, 1009–1014 (1997).
[CrossRef]

1980 (1)

1976 (1)

1975 (1)

W. Eickhoff, E. Weidel, “Measuring method for the refractive index profile of optical glass fibers,” Opt. Quantum Electron. 7, 109–113 (1975).
[CrossRef]

Adams, R.

J. E. Bailey, R. Adams, A. Carlson, C. H. Ching, A. B. Filuk, P. Lake, “High-accuracy time- and space-resolved Stark shift measurements (invited),” Rev. Sci. Instrum. 68, 1009–1014 (1997).
[CrossRef]

Asay, J. R.

J. E. Bailey, J. R. Asay, M. A. Bernard, A. Carlson, G. A. Chandler, C. A. Hall, D. L. Hanson, R. R. Johnston, P. Lake, “Optical spectroscopy measurements of shock waves driven by intense z-pinch radiation,” J. Quant. Spectrosc. Radiat. Transfer 65, 31–42 (2000).
[CrossRef]

Bailey, J. E.

J. E. Bailey, J. R. Asay, M. A. Bernard, A. Carlson, G. A. Chandler, C. A. Hall, D. L. Hanson, R. R. Johnston, P. Lake, “Optical spectroscopy measurements of shock waves driven by intense z-pinch radiation,” J. Quant. Spectrosc. Radiat. Transfer 65, 31–42 (2000).
[CrossRef]

J. E. Bailey, R. Adams, A. Carlson, C. H. Ching, A. B. Filuk, P. Lake, “High-accuracy time- and space-resolved Stark shift measurements (invited),” Rev. Sci. Instrum. 68, 1009–1014 (1997).
[CrossRef]

Bernard, M. A.

J. E. Bailey, J. R. Asay, M. A. Bernard, A. Carlson, G. A. Chandler, C. A. Hall, D. L. Hanson, R. R. Johnston, P. Lake, “Optical spectroscopy measurements of shock waves driven by intense z-pinch radiation,” J. Quant. Spectrosc. Radiat. Transfer 65, 31–42 (2000).
[CrossRef]

Cancellieri, G.

G. Cancellieri, U. Raviaoli, Measurements of Optical Fibers and Devices: Theory and Experiments (Artech House, Norwood, Mass., 1984).

Carlson, A.

J. E. Bailey, J. R. Asay, M. A. Bernard, A. Carlson, G. A. Chandler, C. A. Hall, D. L. Hanson, R. R. Johnston, P. Lake, “Optical spectroscopy measurements of shock waves driven by intense z-pinch radiation,” J. Quant. Spectrosc. Radiat. Transfer 65, 31–42 (2000).
[CrossRef]

J. E. Bailey, R. Adams, A. Carlson, C. H. Ching, A. B. Filuk, P. Lake, “High-accuracy time- and space-resolved Stark shift measurements (invited),” Rev. Sci. Instrum. 68, 1009–1014 (1997).
[CrossRef]

Chandler, G. A.

J. E. Bailey, J. R. Asay, M. A. Bernard, A. Carlson, G. A. Chandler, C. A. Hall, D. L. Hanson, R. R. Johnston, P. Lake, “Optical spectroscopy measurements of shock waves driven by intense z-pinch radiation,” J. Quant. Spectrosc. Radiat. Transfer 65, 31–42 (2000).
[CrossRef]

Ching, C. H.

J. E. Bailey, R. Adams, A. Carlson, C. H. Ching, A. B. Filuk, P. Lake, “High-accuracy time- and space-resolved Stark shift measurements (invited),” Rev. Sci. Instrum. 68, 1009–1014 (1997).
[CrossRef]

Eickhoff, W.

W. Eickhoff, E. Weidel, “Measuring method for the refractive index profile of optical glass fibers,” Opt. Quantum Electron. 7, 109–113 (1975).
[CrossRef]

Filuk, A. B.

J. E. Bailey, R. Adams, A. Carlson, C. H. Ching, A. B. Filuk, P. Lake, “High-accuracy time- and space-resolved Stark shift measurements (invited),” Rev. Sci. Instrum. 68, 1009–1014 (1997).
[CrossRef]

Hall, C. A.

J. E. Bailey, J. R. Asay, M. A. Bernard, A. Carlson, G. A. Chandler, C. A. Hall, D. L. Hanson, R. R. Johnston, P. Lake, “Optical spectroscopy measurements of shock waves driven by intense z-pinch radiation,” J. Quant. Spectrosc. Radiat. Transfer 65, 31–42 (2000).
[CrossRef]

Hanson, D. L.

J. E. Bailey, J. R. Asay, M. A. Bernard, A. Carlson, G. A. Chandler, C. A. Hall, D. L. Hanson, R. R. Johnston, P. Lake, “Optical spectroscopy measurements of shock waves driven by intense z-pinch radiation,” J. Quant. Spectrosc. Radiat. Transfer 65, 31–42 (2000).
[CrossRef]

Johnston, R. R.

J. E. Bailey, J. R. Asay, M. A. Bernard, A. Carlson, G. A. Chandler, C. A. Hall, D. L. Hanson, R. R. Johnston, P. Lake, “Optical spectroscopy measurements of shock waves driven by intense z-pinch radiation,” J. Quant. Spectrosc. Radiat. Transfer 65, 31–42 (2000).
[CrossRef]

Keck, D. B.

Lake, P.

J. E. Bailey, J. R. Asay, M. A. Bernard, A. Carlson, G. A. Chandler, C. A. Hall, D. L. Hanson, R. R. Johnston, P. Lake, “Optical spectroscopy measurements of shock waves driven by intense z-pinch radiation,” J. Quant. Spectrosc. Radiat. Transfer 65, 31–42 (2000).
[CrossRef]

J. E. Bailey, R. Adams, A. Carlson, C. H. Ching, A. B. Filuk, P. Lake, “High-accuracy time- and space-resolved Stark shift measurements (invited),” Rev. Sci. Instrum. 68, 1009–1014 (1997).
[CrossRef]

Marcuse, D.

D. Marcuse, “Pulse distortion in single-mode fibers,” Appl. Opt. 19, 1653–1660 (1980).
[CrossRef] [PubMed]

D. Marcuse, Principles of Optical Fiber Measurement (Academic, New York, 1981).

Midwinter, J.

J. Midwinter, Optical Fibers for Transmission (Wiley, New York, 1979).

Olshansky, R.

Quartz, Heraeus

Heraeus Quartz, “Fused quartz and fused silica for optics,” brochure (Herasil Amersil Inc., Buford, Ga., 1979).

Raviaoli, U.

G. Cancellieri, U. Raviaoli, Measurements of Optical Fibers and Devices: Theory and Experiments (Artech House, Norwood, Mass., 1984).

Weidel, E.

W. Eickhoff, E. Weidel, “Measuring method for the refractive index profile of optical glass fibers,” Opt. Quantum Electron. 7, 109–113 (1975).
[CrossRef]

Yeh, C.

C. Yeh, Handbook of Fiber Optics Theory and Applications (Academic, New York, 1989).

Appl. Opt. (2)

J. Quant. Spectrosc. Radiat. Transfer (1)

J. E. Bailey, J. R. Asay, M. A. Bernard, A. Carlson, G. A. Chandler, C. A. Hall, D. L. Hanson, R. R. Johnston, P. Lake, “Optical spectroscopy measurements of shock waves driven by intense z-pinch radiation,” J. Quant. Spectrosc. Radiat. Transfer 65, 31–42 (2000).
[CrossRef]

Opt. Quantum Electron. (1)

W. Eickhoff, E. Weidel, “Measuring method for the refractive index profile of optical glass fibers,” Opt. Quantum Electron. 7, 109–113 (1975).
[CrossRef]

Rev. Sci. Instrum. (1)

J. E. Bailey, R. Adams, A. Carlson, C. H. Ching, A. B. Filuk, P. Lake, “High-accuracy time- and space-resolved Stark shift measurements (invited),” Rev. Sci. Instrum. 68, 1009–1014 (1997).
[CrossRef]

Other (9)

D. Marcuse, Principles of Optical Fiber Measurement (Academic, New York, 1981).

“Model 207 0.67 meter scanning monochromator” (McPherson, a division of Scientific Instruments Corps., Acton, Mass., 1987).

C. Yeh, Handbook of Fiber Optics Theory and Applications (Academic, New York, 1989).

G. Cancellieri, U. Raviaoli, Measurements of Optical Fibers and Devices: Theory and Experiments (Artech House, Norwood, Mass., 1984).

J. Midwinter, Optical Fibers for Transmission (Wiley, New York, 1979).

The Book on the Technologies of Polymicro (Polymicro Technologies, LLC., Phoenix, Ariz., 1999).

Nanopulser Model 437B Operating Manual (Xenon Corp., Wilmington, Mass., 1986).

Tektronix 640A TDS Family Digitizing Oscilloscopes, Tektronix Inc., Wilsonville, Oreg., 1995.

Heraeus Quartz, “Fused quartz and fused silica for optics,” brochure (Herasil Amersil Inc., Buford, Ga., 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Transit time per unit length. The green asterisk represents the absolute measurements performed at 4000, 6700, and 8500 Å. The red, yellow, blue, and magenta curves are measurements performed with the time-resolved spectrograph. The black curve was derived from the bulk glass refractive index.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Flash-lamp spectra recorded after transmission through 4.12-m-long (top) and 181.08-m-long (bottom) optical fiber.

Fig. 4
Fig. 4

(a) Lineout averaging over 45-Å interval centered at 5156 Å, from the 181.08-m-long fiber data shown in Fig. 3. The smooth curve is a fast Fourier transform of the data. (b) Relative transit time for two different fiber lengths. The actual distance between the two lines is irrelevant.

Fig. 5
Fig. 5

Material dispersion obtained by differentiation of the curves displayed in Fig. 1. Red is the dispersion of the visible data. Magenta, orange, and blue are the UV data sets, and black is the dispersion of the manufacture’s data.

Fig. 6
Fig. 6

Experimental and manufacturer’s visible light attenuation. Blue is the adjusted UV attenuation, and red is the adjusted visible attenuation. Black is the manufacturer’s listed attenuation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ=Lcn-λ dndλ,
dτdλ=-λ Lcd2ndλ2.
n-λdndλ
Aλ=10 log10Piλ/Poλ.

Metrics