Abstract

An intracore Bragg grating written on a photosensitive fiber core is used for strain measurement in composite specimens under load. The strain information is directly related to the absolute change in the Bragg-reflected wavelength. Fiber Bragg grating (FBG) sensors (fibers with intracore gratings) are thus sensitive to strain that is caused by changes in temperature as well as to load-induced changes. Thus these sensors can be made to be independent of source intensity variations and losses. FBG sensors used for load-induced strain sensing in composite structures and the effects of temperature on them are discussed. A detailed account of the use of such embedded structures as self-monitoring nondestructive testing devices is given.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Sirkis, “Interpretation of embedded optical fiber sensor signals,” in Applications of Optical Fiber Sensors in Engineering Mechanics, F. Ansari, ed. (American Society of Civil Engineers, New York, 1993), pp. 85–99.
  2. E. Udd, “Fiber optic sensor overview,” in Fiber Optic Smart Structures, E. Udd, ed. (Wiley, New York, 1995), pp. 155–170.
  3. J. S. Sirkis, A. Dasgupta, “Optical fiber/composite interaction mechanics,” in Fiber Optic Smart Structures, E. Udd, ed. (Wiley, New York, 1995), pp. 61–108.
  4. E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1990).
  5. R. M. Measures, “Fiber optics smart structures program at UTIAS, 1990,” in Fiber Optic Smart Structures and Skins II, E. Udd, ed., Proc. SPIE1170, 92–100 (1990).
    [CrossRef]
  6. K. T. V. Grattam, B. T. Meggit, Optical Fiber Sensor Sensor Technology: Devices and Technology (Chapman & Hall, New York, 1998).
  7. P. A. Crossby, G. R. Powell, G. F. Fernado, D. N. Waters, C. M. France, R. C. Spooncer, “A comparitive study of optical fiber cure monitoring methods,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 141–153 (1997).
  8. J. R. Dunphy, G. Meltz, F. P. Lam, W. W. Morey, “Multi-function distributed optical fiber sensor for composite cure monitoring,” in Fiber Optic Smart Structures and Skins III, R. O. Claus, E. Udd, eds., Proc. SPIE1370, 116–118 (1990).
    [CrossRef]
  9. V. M. Murukeshan, P. Y. Chan, L. S. Ong, A. Asundi, “On-line health monitoring of smart composite structures using fiber polarimetric sensor,” Smart Mater. Struct. 8, 544–548 (1999).
    [CrossRef]
  10. V. M. Murukeshan, P. Y. Chan, L. S. Ong, L. K. Seah, “Cure monitoring of smart composites using fiber bragg grating (FBG) based embedded sensors,” Sensor Actuat. A 79, 153–161 (2000).
    [CrossRef]

2000

V. M. Murukeshan, P. Y. Chan, L. S. Ong, L. K. Seah, “Cure monitoring of smart composites using fiber bragg grating (FBG) based embedded sensors,” Sensor Actuat. A 79, 153–161 (2000).
[CrossRef]

1999

V. M. Murukeshan, P. Y. Chan, L. S. Ong, A. Asundi, “On-line health monitoring of smart composite structures using fiber polarimetric sensor,” Smart Mater. Struct. 8, 544–548 (1999).
[CrossRef]

Asundi, A.

V. M. Murukeshan, P. Y. Chan, L. S. Ong, A. Asundi, “On-line health monitoring of smart composite structures using fiber polarimetric sensor,” Smart Mater. Struct. 8, 544–548 (1999).
[CrossRef]

Chan, P. Y.

V. M. Murukeshan, P. Y. Chan, L. S. Ong, L. K. Seah, “Cure monitoring of smart composites using fiber bragg grating (FBG) based embedded sensors,” Sensor Actuat. A 79, 153–161 (2000).
[CrossRef]

V. M. Murukeshan, P. Y. Chan, L. S. Ong, A. Asundi, “On-line health monitoring of smart composite structures using fiber polarimetric sensor,” Smart Mater. Struct. 8, 544–548 (1999).
[CrossRef]

Crossby, P. A.

P. A. Crossby, G. R. Powell, G. F. Fernado, D. N. Waters, C. M. France, R. C. Spooncer, “A comparitive study of optical fiber cure monitoring methods,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 141–153 (1997).

Dasgupta, A.

J. S. Sirkis, A. Dasgupta, “Optical fiber/composite interaction mechanics,” in Fiber Optic Smart Structures, E. Udd, ed. (Wiley, New York, 1995), pp. 61–108.

Dunphy, J. R.

J. R. Dunphy, G. Meltz, F. P. Lam, W. W. Morey, “Multi-function distributed optical fiber sensor for composite cure monitoring,” in Fiber Optic Smart Structures and Skins III, R. O. Claus, E. Udd, eds., Proc. SPIE1370, 116–118 (1990).
[CrossRef]

Fernado, G. F.

P. A. Crossby, G. R. Powell, G. F. Fernado, D. N. Waters, C. M. France, R. C. Spooncer, “A comparitive study of optical fiber cure monitoring methods,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 141–153 (1997).

France, C. M.

P. A. Crossby, G. R. Powell, G. F. Fernado, D. N. Waters, C. M. France, R. C. Spooncer, “A comparitive study of optical fiber cure monitoring methods,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 141–153 (1997).

Grattam, K. T. V.

K. T. V. Grattam, B. T. Meggit, Optical Fiber Sensor Sensor Technology: Devices and Technology (Chapman & Hall, New York, 1998).

Lam, F. P.

J. R. Dunphy, G. Meltz, F. P. Lam, W. W. Morey, “Multi-function distributed optical fiber sensor for composite cure monitoring,” in Fiber Optic Smart Structures and Skins III, R. O. Claus, E. Udd, eds., Proc. SPIE1370, 116–118 (1990).
[CrossRef]

Measures, R. M.

R. M. Measures, “Fiber optics smart structures program at UTIAS, 1990,” in Fiber Optic Smart Structures and Skins II, E. Udd, ed., Proc. SPIE1170, 92–100 (1990).
[CrossRef]

Meggit, B. T.

K. T. V. Grattam, B. T. Meggit, Optical Fiber Sensor Sensor Technology: Devices and Technology (Chapman & Hall, New York, 1998).

Meltz, G.

J. R. Dunphy, G. Meltz, F. P. Lam, W. W. Morey, “Multi-function distributed optical fiber sensor for composite cure monitoring,” in Fiber Optic Smart Structures and Skins III, R. O. Claus, E. Udd, eds., Proc. SPIE1370, 116–118 (1990).
[CrossRef]

Morey, W. W.

J. R. Dunphy, G. Meltz, F. P. Lam, W. W. Morey, “Multi-function distributed optical fiber sensor for composite cure monitoring,” in Fiber Optic Smart Structures and Skins III, R. O. Claus, E. Udd, eds., Proc. SPIE1370, 116–118 (1990).
[CrossRef]

Murukeshan, V. M.

V. M. Murukeshan, P. Y. Chan, L. S. Ong, L. K. Seah, “Cure monitoring of smart composites using fiber bragg grating (FBG) based embedded sensors,” Sensor Actuat. A 79, 153–161 (2000).
[CrossRef]

V. M. Murukeshan, P. Y. Chan, L. S. Ong, A. Asundi, “On-line health monitoring of smart composite structures using fiber polarimetric sensor,” Smart Mater. Struct. 8, 544–548 (1999).
[CrossRef]

Ong, L. S.

V. M. Murukeshan, P. Y. Chan, L. S. Ong, L. K. Seah, “Cure monitoring of smart composites using fiber bragg grating (FBG) based embedded sensors,” Sensor Actuat. A 79, 153–161 (2000).
[CrossRef]

V. M. Murukeshan, P. Y. Chan, L. S. Ong, A. Asundi, “On-line health monitoring of smart composite structures using fiber polarimetric sensor,” Smart Mater. Struct. 8, 544–548 (1999).
[CrossRef]

Powell, G. R.

P. A. Crossby, G. R. Powell, G. F. Fernado, D. N. Waters, C. M. France, R. C. Spooncer, “A comparitive study of optical fiber cure monitoring methods,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 141–153 (1997).

Seah, L. K.

V. M. Murukeshan, P. Y. Chan, L. S. Ong, L. K. Seah, “Cure monitoring of smart composites using fiber bragg grating (FBG) based embedded sensors,” Sensor Actuat. A 79, 153–161 (2000).
[CrossRef]

Sirkis, J. S.

J. S. Sirkis, A. Dasgupta, “Optical fiber/composite interaction mechanics,” in Fiber Optic Smart Structures, E. Udd, ed. (Wiley, New York, 1995), pp. 61–108.

J. S. Sirkis, “Interpretation of embedded optical fiber sensor signals,” in Applications of Optical Fiber Sensors in Engineering Mechanics, F. Ansari, ed. (American Society of Civil Engineers, New York, 1993), pp. 85–99.

Spooncer, R. C.

P. A. Crossby, G. R. Powell, G. F. Fernado, D. N. Waters, C. M. France, R. C. Spooncer, “A comparitive study of optical fiber cure monitoring methods,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 141–153 (1997).

Udd, E.

E. Udd, “Fiber optic sensor overview,” in Fiber Optic Smart Structures, E. Udd, ed. (Wiley, New York, 1995), pp. 155–170.

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1990).

Waters, D. N.

P. A. Crossby, G. R. Powell, G. F. Fernado, D. N. Waters, C. M. France, R. C. Spooncer, “A comparitive study of optical fiber cure monitoring methods,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 141–153 (1997).

Sensor Actuat. A

V. M. Murukeshan, P. Y. Chan, L. S. Ong, L. K. Seah, “Cure monitoring of smart composites using fiber bragg grating (FBG) based embedded sensors,” Sensor Actuat. A 79, 153–161 (2000).
[CrossRef]

Smart Mater. Struct.

V. M. Murukeshan, P. Y. Chan, L. S. Ong, A. Asundi, “On-line health monitoring of smart composite structures using fiber polarimetric sensor,” Smart Mater. Struct. 8, 544–548 (1999).
[CrossRef]

Other

J. S. Sirkis, “Interpretation of embedded optical fiber sensor signals,” in Applications of Optical Fiber Sensors in Engineering Mechanics, F. Ansari, ed. (American Society of Civil Engineers, New York, 1993), pp. 85–99.

E. Udd, “Fiber optic sensor overview,” in Fiber Optic Smart Structures, E. Udd, ed. (Wiley, New York, 1995), pp. 155–170.

J. S. Sirkis, A. Dasgupta, “Optical fiber/composite interaction mechanics,” in Fiber Optic Smart Structures, E. Udd, ed. (Wiley, New York, 1995), pp. 61–108.

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1990).

R. M. Measures, “Fiber optics smart structures program at UTIAS, 1990,” in Fiber Optic Smart Structures and Skins II, E. Udd, ed., Proc. SPIE1170, 92–100 (1990).
[CrossRef]

K. T. V. Grattam, B. T. Meggit, Optical Fiber Sensor Sensor Technology: Devices and Technology (Chapman & Hall, New York, 1998).

P. A. Crossby, G. R. Powell, G. F. Fernado, D. N. Waters, C. M. France, R. C. Spooncer, “A comparitive study of optical fiber cure monitoring methods,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 141–153 (1997).

J. R. Dunphy, G. Meltz, F. P. Lam, W. W. Morey, “Multi-function distributed optical fiber sensor for composite cure monitoring,” in Fiber Optic Smart Structures and Skins III, R. O. Claus, E. Udd, eds., Proc. SPIE1370, 116–118 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Basic Bragg-grating-based sensor. I r , reflected intensity; I t , transmitted intensity.

Fig. 2
Fig. 2

Schematic of the intracore Bragg grating and associated system for strain measurement: TF, tunable filter. Courtesy of Micron, Inc.

Fig. 3
Fig. 3

Schematic of the FBG embedded composite laminate with programmed delamination/defect.

Fig. 4
Fig. 4

Loading fixture for three-point bending.

Fig. 5
Fig. 5

Defect location: Slope versus defect distance/site for FBG (a) between layers 9 and 10 and (b) between layers 1 and 2.

Fig. 6
Fig. 6

Distances of defects from loading point for three-point bending.

Fig. 7
Fig. 7

FBG as a localized sensor. Effect of the location of defects on sensor performance.

Fig. 8
Fig. 8

Spectrum of a FBG.

Fig. 9
Fig. 9

Graph showing linearity. The graphs are plotted with applied force in the X axis and wavelength change (from FGB sensor) and microstrain (strainguage) in the Y axis.

Fig. 10
Fig. 10

Bragg wavelength change versus applied forces for several temperatures.

Tables (3)

Tables Icon

Table 1 Details of FBG Used in this Study

Tables Icon

Table 2 Effects of Temperature on FBG Sensor Performancea

Tables Icon

Table 3 Bragg Wavelength for Several Forces and Temperatures

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λB=2nΛ,
Δλ/λ=Kε,
ΔλB=1-peλBε,
pe=n2/2P12-νP11+P12,
ΔλB=δΛδT/Λ+δnδT/nλBΔT,
λBT1=λBT11+0.0071 * T-T1,
Δλ=λBT1-λBT0,

Metrics