Abstract

The classical Wolter type I grazing-incidence x-ray telescope consists of a paraboloidal primary mirror and a confocal hyperboloidal secondary mirror. This design exhibits stigmatic imaging on-axis but suffers from coma, astigmatism, field curvature, and higher-order aberrations such as oblique spherical aberration. Wolter–Schwarzschild designs have been developed that strictly satisfy the Abbe sine condition and thus exhibit no spherical aberration or coma. However, for wide-field applications such as the solar x-ray imager (SXI), there is little merit in a design with stigmatic imaging on-axis. Instead, one needs to optimize some area-weighted-average measure of resolution over the desired operational field of view. This has traditionally been accomplished by mere despacing of the focal plane of the classical Wolter type I telescope. Here we present and evaluate in detail a family of hyperboloid–hyperboloid grazing-incidence x-ray telescope designs whose wide-field performance is much improved over that of an optimally despaced Wolter type I and even somewhat improved over that of an optimally despaced Wolter–Schwarzschild design.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Wolter, “Mirror systems with glancing incidence on image producing optics for x-rays,” Ann. Phys. (Leipzig) 10, 94–114 (1952).
    [CrossRef]
  2. H. C. King, The History of the Telescope (Dover, New York, 1979).
  3. H. Wolter, “Generalized Schwarzschild mirror systems with glancing incidence as optics for x-rays,” Ann. Phys. (Leipzig) 10, 286–295 (1952).
    [CrossRef]
  4. B. Aschenbach, “X-ray telescopes,” Rep. Prog. Phys. 48, 579–629 (1985).
    [CrossRef]
  5. A. K. Head, “The two-mirror aplanat,” Proc. Phys. Soc. London Sect. B 70, 945–949 (1957).
    [CrossRef]
  6. J. D. Mangus, J. H. Underwood, “Optical design of a glancing incidence x-ray telescope,” Appl Opt. 8, 95–102 (1969).
    [CrossRef] [PubMed]
  7. J. D. Mangus, “Optical design of glancing incidence XUV telescopes,” Appl Opt. 9, 1019–1025 (1970).
    [CrossRef] [PubMed]
  8. L. P. VanSpeyroeck, R. C. Chase, “Design parameters of paraboloid–hyperboloid telescopes for x-ray astronomy,” Appl. Opt. 11, 440–445 (1972).
    [CrossRef]
  9. R. C. Chase, L. P. VanSpeyroeck, “Wolter–Schwarzschild telescopes for x-ray astronomy,” Appl. Opt. 12, 1042–1044 (1973).
    [CrossRef] [PubMed]
  10. R. C. Chase, “Aplanatic grazing incidence x-ray microscopes: design and performance,” Appl. Opt. 15, 3094–3098 (1976).
    [CrossRef] [PubMed]
  11. W. Werner, “Imaging properties of Wolter I type x-ray telescopes,” Appl. Opt. 16, 764–773 (1977).
    [CrossRef] [PubMed]
  12. C. E. Winkler, D. Korsch, “Primary aberrations for grazing incidence,” Appl. Opt. 16, 2464–2469 (1977).
    [CrossRef] [PubMed]
  13. W. Cash, D. L. Sheeley, J. H. Underwood, “Astronomical applications of grazing incidence telescopes with polynomial surfaces,” in Space Optics-Imaging X-ray Optics Workshop, M. Weisskopf, ed., Proc. SPIE184, 228–233 (1979).
    [CrossRef]
  14. D. Korsch, Reflective Optics (Academic, Boston, 1991), Chap. 11, pp. 282–284.
  15. K. Nariai, “Geometrical aberrations of a generalized Wolter type I telescope,” Appl. Opt. 26, 4428–4432 (1987).
    [CrossRef] [PubMed]
  16. K. Nariai, “Geometrical aberrations of a generalized Wolter type I telescope. 2. Analytical study,” Appl. Opt. 27, 345–350 (1988).
    [CrossRef] [PubMed]
  17. T. T. Saha, “Transfer ray aberrations for paraboloid–hyperboloid telescopes,” Appl. Opt. 24, 1856–1863 (1985).
    [CrossRef]
  18. T. T. Saha, “Transfer ray aberrations of Wolter type I telescopes,” in Grazing Incidence Optics, J. F. Osantowski, L. Van Speybroeck, eds., Proc. SPIE640, 10–19 (1986).
    [CrossRef]
  19. T. T. Saha, “General surface equations for glancing incidence telescopes,” Appl. Opt. 26, 658–663 (1987).
    [CrossRef] [PubMed]
  20. T. T. Saha, “Aberrations for grazing incidence telescopes,” Appl. Opt. 27, 1492–1498 (1988).
    [CrossRef] [PubMed]
  21. D. L. Shealy, T. T. Saha, “Formula for the rms blur circle radius of Wolter telescope based on aberration theory,” Appl. Opt. 29, 2433–2439 (1990).
    [CrossRef] [PubMed]
  22. P. L. Bornman, D. Speich, J. Hirman, V. Pizzo, R. Grubb, Balch, G. Heckman, “GOES solar x-ray imager: overview and operational goals,” in GOES-8 and Beyond, E. R. Washwell, ed., Proc. SPIE2812, 309–319 (1996).
  23. For more information see the following URL: http://www.focus-software.com/zemax/index.html .
  24. R. J. Noll, P. E. Glenn, J. Osantowski, “Optical surface analysis code (OSAC),” in Scattering in Optical Materials, S. Musikant, ed., Proc. SPIE362, 78–85 (1982).
    [CrossRef]
  25. H. H. Hopkins, Wave Theory of Aberrations (Clarendon, Oxford, 1950).
  26. V. N. Mahajan, “Optical Imaging and Aberrations Part I: Ray Geometrical Optics (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1998).
  27. L. P. VanSpeybroeck, “Einstein Observatory (HEAO B) mirror design and performance,” in Space Optics-Imaging X-ray Optics Workshop, M. Weisskopf, ed., Proc. SPIE184, 2–11 (1979).
    [CrossRef]
  28. B. Aschenbach, “Design, construction, and performance of the ROSAT high-resolution mirror assembly,” Appl. Opt. 27, 1404–1413 (1988).
    [CrossRef] [PubMed]
  29. L. P. Van Speybroeck, “Grazing incidence optics for the U.S. High-Resolution X-Ray Astronomy program,” Opt. Eng. 27, 1398–1403 (1988).
  30. P. L. Thompson, J. E. Harvey, “A systems engineering analysis of aplanatic Wolter type I x-ray telescopes,” Opt. Eng. 39, 1677–1691 (2000).
    [CrossRef]
  31. D. C. O’Shea, Elements of Modern Optical Design (Wiley, New York, 1985).
  32. C. J. Burrows, R. Burg, R. Giacconi, “Optimal grazing incidence optics and its application to wide-field x-ray imaging,” Astrophys. J. 392, 760–765 (1992).
    [CrossRef]
  33. SXI Mirror Assembly Critical Design Review, Doc. VG P23–0021 (Raytheon Optical Systems, Danbury, Conn., 1998).
  34. O. Citterio, S. Campana, P. Conconi, M. Ghigo, F. Mazzoleni, “X-ray optics for the wide-field x-ray telescope (WFXT),” in X-Ray Optics, Instruments, and Missions II, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE3766, 207–220 (1999).
  35. L. Golub, Solar-B X-ray Telescope (XRT), Doc. AO 98-OSS-05 (Smithonian Astrophysics Observatory, 60 Garden Street, Cambridge, Mass., 1998).

2000 (1)

P. L. Thompson, J. E. Harvey, “A systems engineering analysis of aplanatic Wolter type I x-ray telescopes,” Opt. Eng. 39, 1677–1691 (2000).
[CrossRef]

1992 (1)

C. J. Burrows, R. Burg, R. Giacconi, “Optimal grazing incidence optics and its application to wide-field x-ray imaging,” Astrophys. J. 392, 760–765 (1992).
[CrossRef]

1990 (1)

1988 (4)

1987 (2)

1985 (2)

1977 (2)

1976 (1)

1973 (1)

1972 (1)

1970 (1)

J. D. Mangus, “Optical design of glancing incidence XUV telescopes,” Appl Opt. 9, 1019–1025 (1970).
[CrossRef] [PubMed]

1969 (1)

J. D. Mangus, J. H. Underwood, “Optical design of a glancing incidence x-ray telescope,” Appl Opt. 8, 95–102 (1969).
[CrossRef] [PubMed]

1957 (1)

A. K. Head, “The two-mirror aplanat,” Proc. Phys. Soc. London Sect. B 70, 945–949 (1957).
[CrossRef]

1952 (2)

H. Wolter, “Mirror systems with glancing incidence on image producing optics for x-rays,” Ann. Phys. (Leipzig) 10, 94–114 (1952).
[CrossRef]

H. Wolter, “Generalized Schwarzschild mirror systems with glancing incidence as optics for x-rays,” Ann. Phys. (Leipzig) 10, 286–295 (1952).
[CrossRef]

Aschenbach, B.

Balch,

P. L. Bornman, D. Speich, J. Hirman, V. Pizzo, R. Grubb, Balch, G. Heckman, “GOES solar x-ray imager: overview and operational goals,” in GOES-8 and Beyond, E. R. Washwell, ed., Proc. SPIE2812, 309–319 (1996).

Bornman, P. L.

P. L. Bornman, D. Speich, J. Hirman, V. Pizzo, R. Grubb, Balch, G. Heckman, “GOES solar x-ray imager: overview and operational goals,” in GOES-8 and Beyond, E. R. Washwell, ed., Proc. SPIE2812, 309–319 (1996).

Burg, R.

C. J. Burrows, R. Burg, R. Giacconi, “Optimal grazing incidence optics and its application to wide-field x-ray imaging,” Astrophys. J. 392, 760–765 (1992).
[CrossRef]

Burrows, C. J.

C. J. Burrows, R. Burg, R. Giacconi, “Optimal grazing incidence optics and its application to wide-field x-ray imaging,” Astrophys. J. 392, 760–765 (1992).
[CrossRef]

Campana, S.

O. Citterio, S. Campana, P. Conconi, M. Ghigo, F. Mazzoleni, “X-ray optics for the wide-field x-ray telescope (WFXT),” in X-Ray Optics, Instruments, and Missions II, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE3766, 207–220 (1999).

Cash, W.

W. Cash, D. L. Sheeley, J. H. Underwood, “Astronomical applications of grazing incidence telescopes with polynomial surfaces,” in Space Optics-Imaging X-ray Optics Workshop, M. Weisskopf, ed., Proc. SPIE184, 228–233 (1979).
[CrossRef]

Chase, R. C.

Citterio, O.

O. Citterio, S. Campana, P. Conconi, M. Ghigo, F. Mazzoleni, “X-ray optics for the wide-field x-ray telescope (WFXT),” in X-Ray Optics, Instruments, and Missions II, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE3766, 207–220 (1999).

Conconi, P.

O. Citterio, S. Campana, P. Conconi, M. Ghigo, F. Mazzoleni, “X-ray optics for the wide-field x-ray telescope (WFXT),” in X-Ray Optics, Instruments, and Missions II, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE3766, 207–220 (1999).

Ghigo, M.

O. Citterio, S. Campana, P. Conconi, M. Ghigo, F. Mazzoleni, “X-ray optics for the wide-field x-ray telescope (WFXT),” in X-Ray Optics, Instruments, and Missions II, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE3766, 207–220 (1999).

Giacconi, R.

C. J. Burrows, R. Burg, R. Giacconi, “Optimal grazing incidence optics and its application to wide-field x-ray imaging,” Astrophys. J. 392, 760–765 (1992).
[CrossRef]

Glenn, P. E.

R. J. Noll, P. E. Glenn, J. Osantowski, “Optical surface analysis code (OSAC),” in Scattering in Optical Materials, S. Musikant, ed., Proc. SPIE362, 78–85 (1982).
[CrossRef]

Golub, L.

L. Golub, Solar-B X-ray Telescope (XRT), Doc. AO 98-OSS-05 (Smithonian Astrophysics Observatory, 60 Garden Street, Cambridge, Mass., 1998).

Grubb, R.

P. L. Bornman, D. Speich, J. Hirman, V. Pizzo, R. Grubb, Balch, G. Heckman, “GOES solar x-ray imager: overview and operational goals,” in GOES-8 and Beyond, E. R. Washwell, ed., Proc. SPIE2812, 309–319 (1996).

Harvey, J. E.

P. L. Thompson, J. E. Harvey, “A systems engineering analysis of aplanatic Wolter type I x-ray telescopes,” Opt. Eng. 39, 1677–1691 (2000).
[CrossRef]

Head, A. K.

A. K. Head, “The two-mirror aplanat,” Proc. Phys. Soc. London Sect. B 70, 945–949 (1957).
[CrossRef]

Heckman, G.

P. L. Bornman, D. Speich, J. Hirman, V. Pizzo, R. Grubb, Balch, G. Heckman, “GOES solar x-ray imager: overview and operational goals,” in GOES-8 and Beyond, E. R. Washwell, ed., Proc. SPIE2812, 309–319 (1996).

Hirman, J.

P. L. Bornman, D. Speich, J. Hirman, V. Pizzo, R. Grubb, Balch, G. Heckman, “GOES solar x-ray imager: overview and operational goals,” in GOES-8 and Beyond, E. R. Washwell, ed., Proc. SPIE2812, 309–319 (1996).

Hopkins, H. H.

H. H. Hopkins, Wave Theory of Aberrations (Clarendon, Oxford, 1950).

King, H. C.

H. C. King, The History of the Telescope (Dover, New York, 1979).

Korsch, D.

Mahajan, V. N.

V. N. Mahajan, “Optical Imaging and Aberrations Part I: Ray Geometrical Optics (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1998).

Mangus, J. D.

J. D. Mangus, “Optical design of glancing incidence XUV telescopes,” Appl Opt. 9, 1019–1025 (1970).
[CrossRef] [PubMed]

J. D. Mangus, J. H. Underwood, “Optical design of a glancing incidence x-ray telescope,” Appl Opt. 8, 95–102 (1969).
[CrossRef] [PubMed]

Mazzoleni, F.

O. Citterio, S. Campana, P. Conconi, M. Ghigo, F. Mazzoleni, “X-ray optics for the wide-field x-ray telescope (WFXT),” in X-Ray Optics, Instruments, and Missions II, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE3766, 207–220 (1999).

Nariai, K.

Noll, R. J.

R. J. Noll, P. E. Glenn, J. Osantowski, “Optical surface analysis code (OSAC),” in Scattering in Optical Materials, S. Musikant, ed., Proc. SPIE362, 78–85 (1982).
[CrossRef]

O’Shea, D. C.

D. C. O’Shea, Elements of Modern Optical Design (Wiley, New York, 1985).

Osantowski, J.

R. J. Noll, P. E. Glenn, J. Osantowski, “Optical surface analysis code (OSAC),” in Scattering in Optical Materials, S. Musikant, ed., Proc. SPIE362, 78–85 (1982).
[CrossRef]

Pizzo, V.

P. L. Bornman, D. Speich, J. Hirman, V. Pizzo, R. Grubb, Balch, G. Heckman, “GOES solar x-ray imager: overview and operational goals,” in GOES-8 and Beyond, E. R. Washwell, ed., Proc. SPIE2812, 309–319 (1996).

Saha, T. T.

Shealy, D. L.

Sheeley, D. L.

W. Cash, D. L. Sheeley, J. H. Underwood, “Astronomical applications of grazing incidence telescopes with polynomial surfaces,” in Space Optics-Imaging X-ray Optics Workshop, M. Weisskopf, ed., Proc. SPIE184, 228–233 (1979).
[CrossRef]

Speich, D.

P. L. Bornman, D. Speich, J. Hirman, V. Pizzo, R. Grubb, Balch, G. Heckman, “GOES solar x-ray imager: overview and operational goals,” in GOES-8 and Beyond, E. R. Washwell, ed., Proc. SPIE2812, 309–319 (1996).

Thompson, P. L.

P. L. Thompson, J. E. Harvey, “A systems engineering analysis of aplanatic Wolter type I x-ray telescopes,” Opt. Eng. 39, 1677–1691 (2000).
[CrossRef]

Underwood, J. H.

J. D. Mangus, J. H. Underwood, “Optical design of a glancing incidence x-ray telescope,” Appl Opt. 8, 95–102 (1969).
[CrossRef] [PubMed]

W. Cash, D. L. Sheeley, J. H. Underwood, “Astronomical applications of grazing incidence telescopes with polynomial surfaces,” in Space Optics-Imaging X-ray Optics Workshop, M. Weisskopf, ed., Proc. SPIE184, 228–233 (1979).
[CrossRef]

Van Speybroeck, L. P.

L. P. Van Speybroeck, “Grazing incidence optics for the U.S. High-Resolution X-Ray Astronomy program,” Opt. Eng. 27, 1398–1403 (1988).

VanSpeybroeck, L. P.

L. P. VanSpeybroeck, “Einstein Observatory (HEAO B) mirror design and performance,” in Space Optics-Imaging X-ray Optics Workshop, M. Weisskopf, ed., Proc. SPIE184, 2–11 (1979).
[CrossRef]

VanSpeyroeck, L. P.

Werner, W.

Winkler, C. E.

Wolter, H.

H. Wolter, “Mirror systems with glancing incidence on image producing optics for x-rays,” Ann. Phys. (Leipzig) 10, 94–114 (1952).
[CrossRef]

H. Wolter, “Generalized Schwarzschild mirror systems with glancing incidence as optics for x-rays,” Ann. Phys. (Leipzig) 10, 286–295 (1952).
[CrossRef]

Ann. Phys. (Leipzig) (2)

H. Wolter, “Mirror systems with glancing incidence on image producing optics for x-rays,” Ann. Phys. (Leipzig) 10, 94–114 (1952).
[CrossRef]

H. Wolter, “Generalized Schwarzschild mirror systems with glancing incidence as optics for x-rays,” Ann. Phys. (Leipzig) 10, 286–295 (1952).
[CrossRef]

Appl Opt. (2)

J. D. Mangus, J. H. Underwood, “Optical design of a glancing incidence x-ray telescope,” Appl Opt. 8, 95–102 (1969).
[CrossRef] [PubMed]

J. D. Mangus, “Optical design of glancing incidence XUV telescopes,” Appl Opt. 9, 1019–1025 (1970).
[CrossRef] [PubMed]

Appl. Opt. (12)

L. P. VanSpeyroeck, R. C. Chase, “Design parameters of paraboloid–hyperboloid telescopes for x-ray astronomy,” Appl. Opt. 11, 440–445 (1972).
[CrossRef]

R. C. Chase, L. P. VanSpeyroeck, “Wolter–Schwarzschild telescopes for x-ray astronomy,” Appl. Opt. 12, 1042–1044 (1973).
[CrossRef] [PubMed]

R. C. Chase, “Aplanatic grazing incidence x-ray microscopes: design and performance,” Appl. Opt. 15, 3094–3098 (1976).
[CrossRef] [PubMed]

W. Werner, “Imaging properties of Wolter I type x-ray telescopes,” Appl. Opt. 16, 764–773 (1977).
[CrossRef] [PubMed]

C. E. Winkler, D. Korsch, “Primary aberrations for grazing incidence,” Appl. Opt. 16, 2464–2469 (1977).
[CrossRef] [PubMed]

T. T. Saha, “Transfer ray aberrations for paraboloid–hyperboloid telescopes,” Appl. Opt. 24, 1856–1863 (1985).
[CrossRef]

T. T. Saha, “General surface equations for glancing incidence telescopes,” Appl. Opt. 26, 658–663 (1987).
[CrossRef] [PubMed]

K. Nariai, “Geometrical aberrations of a generalized Wolter type I telescope,” Appl. Opt. 26, 4428–4432 (1987).
[CrossRef] [PubMed]

K. Nariai, “Geometrical aberrations of a generalized Wolter type I telescope. 2. Analytical study,” Appl. Opt. 27, 345–350 (1988).
[CrossRef] [PubMed]

B. Aschenbach, “Design, construction, and performance of the ROSAT high-resolution mirror assembly,” Appl. Opt. 27, 1404–1413 (1988).
[CrossRef] [PubMed]

T. T. Saha, “Aberrations for grazing incidence telescopes,” Appl. Opt. 27, 1492–1498 (1988).
[CrossRef] [PubMed]

D. L. Shealy, T. T. Saha, “Formula for the rms blur circle radius of Wolter telescope based on aberration theory,” Appl. Opt. 29, 2433–2439 (1990).
[CrossRef] [PubMed]

Astrophys. J. (1)

C. J. Burrows, R. Burg, R. Giacconi, “Optimal grazing incidence optics and its application to wide-field x-ray imaging,” Astrophys. J. 392, 760–765 (1992).
[CrossRef]

Opt. Eng. (2)

L. P. Van Speybroeck, “Grazing incidence optics for the U.S. High-Resolution X-Ray Astronomy program,” Opt. Eng. 27, 1398–1403 (1988).

P. L. Thompson, J. E. Harvey, “A systems engineering analysis of aplanatic Wolter type I x-ray telescopes,” Opt. Eng. 39, 1677–1691 (2000).
[CrossRef]

Proc. Phys. Soc. London Sect. B (1)

A. K. Head, “The two-mirror aplanat,” Proc. Phys. Soc. London Sect. B 70, 945–949 (1957).
[CrossRef]

Rep. Prog. Phys. (1)

B. Aschenbach, “X-ray telescopes,” Rep. Prog. Phys. 48, 579–629 (1985).
[CrossRef]

Other (14)

H. C. King, The History of the Telescope (Dover, New York, 1979).

SXI Mirror Assembly Critical Design Review, Doc. VG P23–0021 (Raytheon Optical Systems, Danbury, Conn., 1998).

O. Citterio, S. Campana, P. Conconi, M. Ghigo, F. Mazzoleni, “X-ray optics for the wide-field x-ray telescope (WFXT),” in X-Ray Optics, Instruments, and Missions II, R. B. Hoover, A. B. C. Walker, eds., Proc. SPIE3766, 207–220 (1999).

L. Golub, Solar-B X-ray Telescope (XRT), Doc. AO 98-OSS-05 (Smithonian Astrophysics Observatory, 60 Garden Street, Cambridge, Mass., 1998).

W. Cash, D. L. Sheeley, J. H. Underwood, “Astronomical applications of grazing incidence telescopes with polynomial surfaces,” in Space Optics-Imaging X-ray Optics Workshop, M. Weisskopf, ed., Proc. SPIE184, 228–233 (1979).
[CrossRef]

D. Korsch, Reflective Optics (Academic, Boston, 1991), Chap. 11, pp. 282–284.

T. T. Saha, “Transfer ray aberrations of Wolter type I telescopes,” in Grazing Incidence Optics, J. F. Osantowski, L. Van Speybroeck, eds., Proc. SPIE640, 10–19 (1986).
[CrossRef]

P. L. Bornman, D. Speich, J. Hirman, V. Pizzo, R. Grubb, Balch, G. Heckman, “GOES solar x-ray imager: overview and operational goals,” in GOES-8 and Beyond, E. R. Washwell, ed., Proc. SPIE2812, 309–319 (1996).

For more information see the following URL: http://www.focus-software.com/zemax/index.html .

R. J. Noll, P. E. Glenn, J. Osantowski, “Optical surface analysis code (OSAC),” in Scattering in Optical Materials, S. Musikant, ed., Proc. SPIE362, 78–85 (1982).
[CrossRef]

H. H. Hopkins, Wave Theory of Aberrations (Clarendon, Oxford, 1950).

V. N. Mahajan, “Optical Imaging and Aberrations Part I: Ray Geometrical Optics (Society for Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1998).

L. P. VanSpeybroeck, “Einstein Observatory (HEAO B) mirror design and performance,” in Space Optics-Imaging X-ray Optics Workshop, M. Weisskopf, ed., Proc. SPIE184, 2–11 (1979).
[CrossRef]

D. C. O’Shea, Elements of Modern Optical Design (Wiley, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Optical configuration for Classical Wolter type I x-ray telescope.

Fig. 2
Fig. 2

Geometrical performance of a classical Wolter type I design for the SXI telescope system parameters. Performance curves for various axial positions of the focal plane are presented.

Fig. 3
Fig. 3

Comparison of the geometrical performance of a classical Wolter type I design and a WS design for the SXI telescope system parameters. Also displayed is the percent reduction in rms image radius in going from a classical Wolter type I design to the WS design.

Fig. 4
Fig. 4

Geometrical performance of a WS telescope design (SXI first-order parameters) for several different axial positions of the focal plane.

Fig. 5
Fig. 5

HH grazing-incidence x-ray telescope design.

Fig. 6
Fig. 6

Geometrical performance of a new family of optimized HH designs.

Fig. 7
Fig. 7

Area-weighted-average rms image radius versus OFOV for the Wolter type I design for different values of focal plane despace.

Fig. 8
Fig. 8

Area-weighted-average rms image radius versus focal plane despace for a Wolter type I design with an OFOV of 21 arc min.

Fig. 9
Fig. 9

Area-weighted-average geometrical rms image radius versus OFOV for the new family of HH designs.

Fig. 10
Fig. 10

Area-weighted-average geometrical rms image radius versus θ B of a HH design for an OFOV of 21 arc min.

Fig. 11
Fig. 11

Comparison of the area-weighted-average rms image radius versus OFOV for three different types of grazing-incidence x-ray telescopes for wide-field imaging applications.

Tables (5)

Tables Icon

Table 1 Various SXI Baseline Geometrical and Optical Parametersa

Tables Icon

Table 2 ZEMAX Lens-Editor Values for SXI Baseline Design

Tables Icon

Table 3 Generalized Wolter Type I System Constants

Tables Icon

Table 4 Optical Prescription and Other Mirror Constants

Tables Icon

Table 5 Number of Average Spatial Resolution Elements, N, in an OFOV with 21-arc min Radius

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σawa=1ATθ=0θ σrmsθ2πθdθ.
N=no. awa res. ele.=ATπσawa2.

Metrics