Abstract

A theoretical simulation of a four-band fiber-optic radiometric technique is presented. This is a technique for remote, noncontact temperature measurement of a sample near room temperature, under conditions of unknown emissivity and ambient temperature. A realistic setup of a broadband IR detector, a set of three filters, an IR fiber, and a MATLAB software package for the calculations, is simulated in two steps: a calibration process and a measurement process. The results of the simulation show the limitations and advantages of the four-band radiometric technique and show the expected resolution of the sample temperature and emissivity and of the ambient temperature measurement. The theoretical resolution of the sample temperature measured by the four-band radiometric setup comes close to the resolution achieved in an equivalent single-band radiometric setup. The four-band method has an additional advantage of making it possible to calculate values of emissivity and ambient temperature.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription