Abstract

A theoretical simulation of a four-band fiber-optic radiometric technique is presented. This is a technique for remote, noncontact temperature measurement of a sample near room temperature, under conditions of unknown emissivity and ambient temperature. A realistic setup of a broadband IR detector, a set of three filters, an IR fiber, and a MATLAB software package for the calculations, is simulated in two steps: a calibration process and a measurement process. The results of the simulation show the limitations and advantages of the four-band radiometric technique and show the expected resolution of the sample temperature and emissivity and of the ambient temperature measurement. The theoretical resolution of the sample temperature measured by the four-band radiometric setup comes close to the resolution achieved in an equivalent single-band radiometric setup. The four-band method has an additional advantage of making it possible to calculate values of emissivity and ambient temperature.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bass, Handbook of Optics, 2nd ed. (McGraw-Hill, New York, 1995), Chap. 24.
  2. D. P. Almond, P. M. Patel, Photothermal Science and Techniques (Chapman & Hall, London, 1996), pp. 87–91.
  3. K. Chrzanowski, “Comparison of shortwave and longwave measuring thermal imaging systems,” Appl. Opt. 34, 2888–2897 (1995).
    [CrossRef] [PubMed]
  4. K. Chrzanowski, “Experimental verification of theory of influence from measurement conditions and system parameters on temperature measurement accuracy with IR systems,” Appl. Opt. 35, 3540–3547 (1996).
    [CrossRef] [PubMed]
  5. H. Jiang, Y. Qian, “High-speed dual-spectra infrared imaging,” Opt. Eng. 32, 1281–1289 (1993).
    [CrossRef]
  6. Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
    [CrossRef]
  7. Z. Andreic, “Numerical evaluation of the multiple-pair method of calculating temperature from a measured continuous spectrum,” Appl. Opt. 27, 4073–4075 (1998).
    [CrossRef]
  8. V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
    [CrossRef]
  9. M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
    [CrossRef]
  10. M. A. Khan, C. Allemand, T. W. Eagar, “Noncontact temperature measurement. II. Least squares based techniques,” Rev. Sci. Instrum. 62, 403–410 (1991).
    [CrossRef]
  11. G. B. Hunter, C. D. Allemand, T. W. Eagar, “Multiwavelength pyrometry: an improved method,” Opt. Eng. 24, 1081–1085 (1985).
  12. G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).
  13. K. Chrzanowski, M. Szulim, “Measure of the influence of detector noise on temperature-measurement accuracy for multiband infrared systems,” Appl. Opt. 37, 5051–5057 (1998).
    [CrossRef]
  14. K. Chrzanowski, M. Szulim, “Errors of temperature measurement with multiband systems,” Appl. Opt. 38, 1998–2006 (1999).
    [CrossRef]
  15. E. Belotserkovsky, O. Bar-Or, A. Katzir, “Infrared fiberoptic temperature monitoring during machining procedures,” Meas. Sci. Technol. 5, 451–453 (1994).
    [CrossRef]
  16. A. Barak, O. Eyal, M. Rosner, E. Belotserkovsky, A. Solomon, M. Belkin, A. Katzir, “Temperature-controlled CO2 laser tissue welding of ocular tissue,” Surv. Ophthalmol. 42, 77–81 (1997).
    [CrossRef]
  17. A. Zur, A. Katzir, “Use of infrared fibers for low-temperature radiometric measurements,” Appl. Phys. Lett. 48, 499–500 (1986).
    [CrossRef]
  18. O. Shenfeld, O. Eyal, B. Goldwasser, A. Katzir, “Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding,” Lasers Surg. Med. 14, 323–328 (1994).
    [CrossRef]
  19. A. Zur, “Infrared fiberoptic radiometry, thermometry and distributed sensing,” Ph.D. dissertation (Tel Aviv University, Tel Aviv, Israel, 1991).
  20. K. Levenberg, “A method for the solution of certain problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).
  21. V. Scharf, A. Katzir, “Four-band fiberoptic radiometry for determining the ‘true’ temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
    [CrossRef]
  22. S. Hejazi, D. C. Wobschall, R. A. Spangler, M. Anbar, “Scope and limitations of thermal imaging using multiwavelength infrared detection,” Opt. Eng. 31, 2383–2392 (1992).
    [CrossRef]

2000 (1)

V. Scharf, A. Katzir, “Four-band fiberoptic radiometry for determining the ‘true’ temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

1999 (1)

1998 (2)

1997 (2)

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

A. Barak, O. Eyal, M. Rosner, E. Belotserkovsky, A. Solomon, M. Belkin, A. Katzir, “Temperature-controlled CO2 laser tissue welding of ocular tissue,” Surv. Ophthalmol. 42, 77–81 (1997).
[CrossRef]

1996 (2)

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

K. Chrzanowski, “Experimental verification of theory of influence from measurement conditions and system parameters on temperature measurement accuracy with IR systems,” Appl. Opt. 35, 3540–3547 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (2)

O. Shenfeld, O. Eyal, B. Goldwasser, A. Katzir, “Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding,” Lasers Surg. Med. 14, 323–328 (1994).
[CrossRef]

E. Belotserkovsky, O. Bar-Or, A. Katzir, “Infrared fiberoptic temperature monitoring during machining procedures,” Meas. Sci. Technol. 5, 451–453 (1994).
[CrossRef]

1993 (1)

H. Jiang, Y. Qian, “High-speed dual-spectra infrared imaging,” Opt. Eng. 32, 1281–1289 (1993).
[CrossRef]

1992 (1)

S. Hejazi, D. C. Wobschall, R. A. Spangler, M. Anbar, “Scope and limitations of thermal imaging using multiwavelength infrared detection,” Opt. Eng. 31, 2383–2392 (1992).
[CrossRef]

1991 (1)

M. A. Khan, C. Allemand, T. W. Eagar, “Noncontact temperature measurement. II. Least squares based techniques,” Rev. Sci. Instrum. 62, 403–410 (1991).
[CrossRef]

1990 (1)

V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
[CrossRef]

1986 (2)

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).

A. Zur, A. Katzir, “Use of infrared fibers for low-temperature radiometric measurements,” Appl. Phys. Lett. 48, 499–500 (1986).
[CrossRef]

1985 (1)

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Multiwavelength pyrometry: an improved method,” Opt. Eng. 24, 1081–1085 (1985).

1944 (1)

K. Levenberg, “A method for the solution of certain problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).

Allemand, C.

M. A. Khan, C. Allemand, T. W. Eagar, “Noncontact temperature measurement. II. Least squares based techniques,” Rev. Sci. Instrum. 62, 403–410 (1991).
[CrossRef]

Allemand, C. D.

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Multiwavelength pyrometry: an improved method,” Opt. Eng. 24, 1081–1085 (1985).

Almond, D. P.

D. P. Almond, P. M. Patel, Photothermal Science and Techniques (Chapman & Hall, London, 1996), pp. 87–91.

Anbar, M.

S. Hejazi, D. C. Wobschall, R. A. Spangler, M. Anbar, “Scope and limitations of thermal imaging using multiwavelength infrared detection,” Opt. Eng. 31, 2383–2392 (1992).
[CrossRef]

Andreic, Z.

Barak, A.

A. Barak, O. Eyal, M. Rosner, E. Belotserkovsky, A. Solomon, M. Belkin, A. Katzir, “Temperature-controlled CO2 laser tissue welding of ocular tissue,” Surv. Ophthalmol. 42, 77–81 (1997).
[CrossRef]

Bar-Or, O.

E. Belotserkovsky, O. Bar-Or, A. Katzir, “Infrared fiberoptic temperature monitoring during machining procedures,” Meas. Sci. Technol. 5, 451–453 (1994).
[CrossRef]

Bass, M.

M. Bass, Handbook of Optics, 2nd ed. (McGraw-Hill, New York, 1995), Chap. 24.

Belkin, M.

A. Barak, O. Eyal, M. Rosner, E. Belotserkovsky, A. Solomon, M. Belkin, A. Katzir, “Temperature-controlled CO2 laser tissue welding of ocular tissue,” Surv. Ophthalmol. 42, 77–81 (1997).
[CrossRef]

Belotserkovsky, E.

A. Barak, O. Eyal, M. Rosner, E. Belotserkovsky, A. Solomon, M. Belkin, A. Katzir, “Temperature-controlled CO2 laser tissue welding of ocular tissue,” Surv. Ophthalmol. 42, 77–81 (1997).
[CrossRef]

E. Belotserkovsky, O. Bar-Or, A. Katzir, “Infrared fiberoptic temperature monitoring during machining procedures,” Meas. Sci. Technol. 5, 451–453 (1994).
[CrossRef]

Chrzanowski, K.

Dankner, Y.

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

Dietl, H.

V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
[CrossRef]

Eagar, T. W.

M. A. Khan, C. Allemand, T. W. Eagar, “Noncontact temperature measurement. II. Least squares based techniques,” Rev. Sci. Instrum. 62, 403–410 (1991).
[CrossRef]

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Multiwavelength pyrometry: an improved method,” Opt. Eng. 24, 1081–1085 (1985).

Eyal, O.

A. Barak, O. Eyal, M. Rosner, E. Belotserkovsky, A. Solomon, M. Belkin, A. Katzir, “Temperature-controlled CO2 laser tissue welding of ocular tissue,” Surv. Ophthalmol. 42, 77–81 (1997).
[CrossRef]

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

O. Shenfeld, O. Eyal, B. Goldwasser, A. Katzir, “Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding,” Lasers Surg. Med. 14, 323–328 (1994).
[CrossRef]

Goldwasser, B.

O. Shenfeld, O. Eyal, B. Goldwasser, A. Katzir, “Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding,” Lasers Surg. Med. 14, 323–328 (1994).
[CrossRef]

Hejazi, S.

S. Hejazi, D. C. Wobschall, R. A. Spangler, M. Anbar, “Scope and limitations of thermal imaging using multiwavelength infrared detection,” Opt. Eng. 31, 2383–2392 (1992).
[CrossRef]

Hou, E. S. H.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Hunter, G. B.

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Multiwavelength pyrometry: an improved method,” Opt. Eng. 24, 1081–1085 (1985).

Jiang, H.

H. Jiang, Y. Qian, “High-speed dual-spectra infrared imaging,” Opt. Eng. 32, 1281–1289 (1993).
[CrossRef]

Kaplinsky, M. B.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Katzir, A.

V. Scharf, A. Katzir, “Four-band fiberoptic radiometry for determining the ‘true’ temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

A. Barak, O. Eyal, M. Rosner, E. Belotserkovsky, A. Solomon, M. Belkin, A. Katzir, “Temperature-controlled CO2 laser tissue welding of ocular tissue,” Surv. Ophthalmol. 42, 77–81 (1997).
[CrossRef]

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

O. Shenfeld, O. Eyal, B. Goldwasser, A. Katzir, “Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding,” Lasers Surg. Med. 14, 323–328 (1994).
[CrossRef]

E. Belotserkovsky, O. Bar-Or, A. Katzir, “Infrared fiberoptic temperature monitoring during machining procedures,” Meas. Sci. Technol. 5, 451–453 (1994).
[CrossRef]

A. Zur, A. Katzir, “Use of infrared fibers for low-temperature radiometric measurements,” Appl. Phys. Lett. 48, 499–500 (1986).
[CrossRef]

Khan, M. A.

M. A. Khan, C. Allemand, T. W. Eagar, “Noncontact temperature measurement. II. Least squares based techniques,” Rev. Sci. Instrum. 62, 403–410 (1991).
[CrossRef]

Kosonocky, W. F.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Levenberg, K.

K. Levenberg, “A method for the solution of certain problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).

Li, J.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Manikopoulos, C. N.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

McCaffrey, N. J.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Patel, P. M.

D. P. Almond, P. M. Patel, Photothermal Science and Techniques (Chapman & Hall, London, 1996), pp. 87–91.

Patel, V.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Qian, Y.

H. Jiang, Y. Qian, “High-speed dual-spectra infrared imaging,” Opt. Eng. 32, 1281–1289 (1993).
[CrossRef]

Ravindra, N. M.

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

Rosner, M.

A. Barak, O. Eyal, M. Rosner, E. Belotserkovsky, A. Solomon, M. Belkin, A. Katzir, “Temperature-controlled CO2 laser tissue welding of ocular tissue,” Surv. Ophthalmol. 42, 77–81 (1997).
[CrossRef]

Scharf, V.

V. Scharf, A. Katzir, “Four-band fiberoptic radiometry for determining the ‘true’ temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

Shenfeld, O.

O. Shenfeld, O. Eyal, B. Goldwasser, A. Katzir, “Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding,” Lasers Surg. Med. 14, 323–328 (1994).
[CrossRef]

Solomon, A.

A. Barak, O. Eyal, M. Rosner, E. Belotserkovsky, A. Solomon, M. Belkin, A. Katzir, “Temperature-controlled CO2 laser tissue welding of ocular tissue,” Surv. Ophthalmol. 42, 77–81 (1997).
[CrossRef]

Spangler, R. A.

S. Hejazi, D. C. Wobschall, R. A. Spangler, M. Anbar, “Scope and limitations of thermal imaging using multiwavelength infrared detection,” Opt. Eng. 31, 2383–2392 (1992).
[CrossRef]

Szulim, M.

Tank, V.

V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
[CrossRef]

Wobschall, D. C.

S. Hejazi, D. C. Wobschall, R. A. Spangler, M. Anbar, “Scope and limitations of thermal imaging using multiwavelength infrared detection,” Opt. Eng. 31, 2383–2392 (1992).
[CrossRef]

Zur, A.

A. Zur, A. Katzir, “Use of infrared fibers for low-temperature radiometric measurements,” Appl. Phys. Lett. 48, 499–500 (1986).
[CrossRef]

A. Zur, “Infrared fiberoptic radiometry, thermometry and distributed sensing,” Ph.D. dissertation (Tel Aviv University, Tel Aviv, Israel, 1991).

Appl. Opt. (5)

Appl. Phys. Lett. (3)

A. Zur, A. Katzir, “Use of infrared fibers for low-temperature radiometric measurements,” Appl. Phys. Lett. 48, 499–500 (1986).
[CrossRef]

V. Scharf, A. Katzir, “Four-band fiberoptic radiometry for determining the ‘true’ temperature of gray bodies,” Appl. Phys. Lett. 77, 2955–2957 (2000).
[CrossRef]

Y. Dankner, O. Eyal, A. Katzir, “Two bandpass fiber-optic radiometry for monitoring the temperature of photoresist during dry processing,” Appl. Phys. Lett. 68, 2583–2585 (1996).
[CrossRef]

Infrared Phys. (1)

V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
[CrossRef]

Lasers Surg. Med. (1)

O. Shenfeld, O. Eyal, B. Goldwasser, A. Katzir, “Silver halide fiber optic radiometric temperature measurement and control of CO2 laser-irradiated tissues and application to tissue welding,” Lasers Surg. Med. 14, 323–328 (1994).
[CrossRef]

Meas. Sci. Technol. (1)

E. Belotserkovsky, O. Bar-Or, A. Katzir, “Infrared fiberoptic temperature monitoring during machining procedures,” Meas. Sci. Technol. 5, 451–453 (1994).
[CrossRef]

Opt. Eng. (5)

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Multiwavelength pyrometry: an improved method,” Opt. Eng. 24, 1081–1085 (1985).

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).

M. B. Kaplinsky, J. Li, N. J. McCaffrey, V. Patel, E. S. H. Hou, N. M. Ravindra, C. N. Manikopoulos, W. F. Kosonocky, “Recent advances in the development of a multiwavelength imaging pyrometer,” Opt. Eng. 36, 3176–3187 (1997).
[CrossRef]

S. Hejazi, D. C. Wobschall, R. A. Spangler, M. Anbar, “Scope and limitations of thermal imaging using multiwavelength infrared detection,” Opt. Eng. 31, 2383–2392 (1992).
[CrossRef]

H. Jiang, Y. Qian, “High-speed dual-spectra infrared imaging,” Opt. Eng. 32, 1281–1289 (1993).
[CrossRef]

Q. Appl. Math. (1)

K. Levenberg, “A method for the solution of certain problems in least squares,” Q. Appl. Math. 2, 164–168 (1944).

Rev. Sci. Instrum. (1)

M. A. Khan, C. Allemand, T. W. Eagar, “Noncontact temperature measurement. II. Least squares based techniques,” Rev. Sci. Instrum. 62, 403–410 (1991).
[CrossRef]

Surv. Ophthalmol. (1)

A. Barak, O. Eyal, M. Rosner, E. Belotserkovsky, A. Solomon, M. Belkin, A. Katzir, “Temperature-controlled CO2 laser tissue welding of ocular tissue,” Surv. Ophthalmol. 42, 77–81 (1997).
[CrossRef]

Other (3)

M. Bass, Handbook of Optics, 2nd ed. (McGraw-Hill, New York, 1995), Chap. 24.

D. P. Almond, P. M. Patel, Photothermal Science and Techniques (Chapman & Hall, London, 1996), pp. 87–91.

A. Zur, “Infrared fiberoptic radiometry, thermometry and distributed sensing,” Ph.D. dissertation (Tel Aviv University, Tel Aviv, Israel, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Multiband fiber-optic radiometry. Schematic description of all factors included in the signal obtained by a radiometer [Eq. (2)].

Fig. 2
Fig. 2

Single-band fiber-optic radiometer, including an IR detector, a chopper, and a lock-in amplifier.

Fig. 3
Fig. 3

Top view of the function of the sum of squares. Here the simulated real signals are for the case T body = 350 K, T room = 300 K, ∊ = 0.8.

Fig. 4
Fig. 4

Solution of T body, T room, and ∊ as a function of the initial guess of T body, for noiseless signals. The real parameters are T body = 343 K, T room = 297 K, and ∊ = 0.8, whereas the initial guesses are T body = 300–370 K, T room = 300 K, and ∊ = 1.

Fig. 5
Fig. 5

Solution of T body, T room, and ∊ as a function of the initial guess of T body, when noise is included. The real parameters are T body = 343 K, T room = 297 K, and ∊ = 0.8, whereas the initial guesses are T body = 300–370 K, T room = 300 K, and ∊ = 1.

Fig. 6
Fig. 6

Simulation of the four-band radiometry measurement resolution: The relative errors of the body temperature, the ambient temperature, and the body emissivity, as a function of the body temperature.

Fig. 7
Fig. 7

Simulation of the four-band radiometry measurement resolution: The relative errors of the body temperature and the ambient temperature as a function of the emissivity.

Fig. 8
Fig. 8

Simulation of the temperature calculation for a nearly graybody. Pluses, simulates a real graybody with ∊ = 0.8 in all four bands; circles, same body with ∊1 changed to 0.79; squares, ∊2 changed to 0.79; triangles, ∊3 changed to 0.79; and diamonds, ∊4 changed to 0.79. Solid line, correct values of temperature; dashed lines, ±2% from that value.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S=Signalopen chopper - Signalclosed chopper=KΩ bodyWbbTbody, λτλdλ+1-body×WbbTroom, λτλdλ+Ω0-Ω× WbbTradiometer, λτλdλ-Ω0 chopperWbbTchopper, λτλdλ+ 1-chopperWbbTradiometer, λτλdλ.
S=KΩ bodyWbbTbody, λτλdλ+ 1-body×WbbTroom, λτλdλ- WbbTradiometer, λτλdλ.
S=KΩ  bodyWbbTbody, λ-WbbTroom, λτλdλ.
Si=AiΔλiWbbTbody, λ+1-WbbTroom, λ×exp-αLτλdλ+Bi.
λaλb WbbTj, λ=λaλb2πhc2λ-5exphc/λkTj-1.
Ai=1/π2aG Res Tri,
Sik=AiΔλi WbbTbody k, λexp-αLτλdλ+Bi.
i=14Ssimulated-Scalculated2>i=14ΔSi min2.

Metrics