Abstract

A highly sensitive method is presented for noninvasive defect analysis on thin structures with a Q-switched double-pulsed ruby laser with frequency doubling (347 nm). In our research we feature an all-optical arrangement, where a focused laser pulse derived from the same ruby laser (694 nm) acts as a built-in synchronous excitation source for digital holographic interferometry. The recordings are made with a CCD camera for capturing two holograms (two states of the specimen) corresponding to the two UV laser pulses with a short time separation (10–50 µs). Subtraction of the phase distribution in two digital holograms gives a fringe phase map that shows the change in deformation of the specimen between the recordings. The advantage of the proposed method is two fold. First, the use of a shorter wavelength results in a higher sensitivity. Second, owing to the induced synchronous built-in optical excitation, the specimen is not subjected to any external physical excitation devices. Experimental results are presented on identification and evaluation of defects in thin metal sheets.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription