Abstract

A long optical path has been folded between two 7.5-cm diam spherical or aspherical mirrors to provide an output beam which can be well separated from previous reflections with 1000 or more passes between the mirrors. The 3000-m path provides 10 μsec of delay. This system can be used as a dispersionless optical delay line for use in filtering or storage of information modulated onto the light beam. The pattern of beams between the two mirrors is obtained in one of two ways. A small perturbing mirror may be inserted to give a series of offset ellipses, or one or both of the mirrors can be made astigmatic to give a Lissajous pattern of spots on each mirror. The output beam can be separated from others by discriminating in both angle and position. The diffraction losses of the system are much lower than those for an open beam because of the periodic focusing of the spherical mirrors. The extreme dependence of the loss of the delay line upon the absorption and scattering loss of the mirrors makes the system dependent upon very low loss mirrors and also makes the system a suitable method for measuring mirror loss. Block diagrams are shown for some possible filtering and storage applications.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).
  2. D. R. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964).
    [CrossRef]
  3. D. L. Perry, Appl. Opt. 4, 987 (1965).
    [CrossRef]
  4. H. E. Kallmann, Proc. Inst. Radio Engrs. 28, 302 (1940).
  5. L. A. Zadek, C. A. Desoer, (McGraw-Hill, New York, 1963), p. 447.
  6. F. K. Becker, L. N. Holzman, R. W. Lucky, E. Port, Proc. IEEE 53, 96 (1965).
    [CrossRef]

1965

F. K. Becker, L. N. Holzman, R. W. Lucky, E. Port, Proc. IEEE 53, 96 (1965).
[CrossRef]

D. L. Perry, Appl. Opt. 4, 987 (1965).
[CrossRef]

1964

1961

A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).

1940

H. E. Kallmann, Proc. Inst. Radio Engrs. 28, 302 (1940).

Becker, F. K.

F. K. Becker, L. N. Holzman, R. W. Lucky, E. Port, Proc. IEEE 53, 96 (1965).
[CrossRef]

Desoer, C. A.

L. A. Zadek, C. A. Desoer, (McGraw-Hill, New York, 1963), p. 447.

Fox, A. G.

A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).

Herriott, D. R.

Holzman, L. N.

F. K. Becker, L. N. Holzman, R. W. Lucky, E. Port, Proc. IEEE 53, 96 (1965).
[CrossRef]

Kallmann, H. E.

H. E. Kallmann, Proc. Inst. Radio Engrs. 28, 302 (1940).

Kogelnik, H.

Kompfner, R.

Li, T.

A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).

Lucky, R. W.

F. K. Becker, L. N. Holzman, R. W. Lucky, E. Port, Proc. IEEE 53, 96 (1965).
[CrossRef]

Perry, D. L.

Port, E.

F. K. Becker, L. N. Holzman, R. W. Lucky, E. Port, Proc. IEEE 53, 96 (1965).
[CrossRef]

Zadek, L. A.

L. A. Zadek, C. A. Desoer, (McGraw-Hill, New York, 1963), p. 447.

Appl. Opt.

Bell Syst. Tech. J.

A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).

Proc. IEEE

F. K. Becker, L. N. Holzman, R. W. Lucky, E. Port, Proc. IEEE 53, 96 (1965).
[CrossRef]

Proc. Inst. Radio Engrs.

H. E. Kallmann, Proc. Inst. Radio Engrs. 28, 302 (1940).

Other

L. A. Zadek, C. A. Desoer, (McGraw-Hill, New York, 1963), p. 447.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Pattern of reflections on one mirror of spherical mirror delay line.

Fig. 2
Fig. 2

Analysis of pattern in spherical mirror delay line where n is path from injection in units of D.

Fig. 3
Fig. 3

Cross section of delay line showing perturber mirror position.

Fig. 4
Fig. 4

Multiple elliptical patterns on mirror with perturber system.

Fig. 5
Fig. 5

(left). Multiple elliptical pattern with perturber tipped for increasing major axis.

Fig. 6
Fig. 6

(right). Multiple elliptical pattern with major axis decreasing through zero.

Fig. 7
Fig. 7

Analysis of mirror patterns with astigmatic mirrors where n is path from injection in units of D.

Fig. 8
Fig. 8

(left). Synchronously sampled Lissajous patterns.

Fig. 9
Fig. 9

(right). Synchronously sampled Lissajous patterns.

Fig. 10
Fig. 10

(left). Synchronously sampled Lissajous pattern.

Fig. 11
Fig. 11

(right). Nonsynchronously sampled Lissajous pattern.

Fig. 12
Fig. 12

Mirror pattern in optical delay line showing faint output spots in center of ellipse.

Fig. 13
Fig. 13

Order of spot positions in pattern of Fig. 12.

Fig. 14
Fig. 14

(left).Usual pattern used in delay line with center entrance and exit apertures.

Fig. 15
Fig. 15

(right).Pattern with entering beam not matched so that spot size is not constant and some spots are astigmatic.

Fig. 16
Fig. 16

Entering and exit methods.

Fig. 17
Fig. 17

Discrimination of beams by angle.

Fig. 18
Fig. 18

Mirrors mounted at close spacing with smoke in air to show beams.

Fig. 19
Fig. 19

Multiple exposure oscilloscope picture of successive spot positions in pattern. Horizontal scale:0.5 μsec per large division. Mirror separation: 1.52 m.

Fig. 20
Fig. 20

General diagram of optical storage systems.

Fig. 21
Fig. 21

Optical system and electrical equivalent transversal filter.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

x n = A sin ( n θ x + α ) , y n = B sin ( n θ y + β ) ,
cos θ x = [ 1 ( D / 2 f x ) ] ,
cos θ y = [ 1 ( D / 2 f y ) ] .
δ = δ x x 1 n ( 1 1 ) .
H ( j ω ) = n = 0 N c n e j ω ( n τ ) , = e j ω ( N / 2 ) τ [ 1 + k = 1 N / 2 a k cos ( k ω ) τ ] .

Metrics