Abstract

A useful polarizer for the 6-μ to 20-μ region has been designed, fabricated, and tested. A microscopic wire grid was formed by ruling Irtran 2 (ZnS) or Irtran 4 (ZnSe) and evaporating aluminum preferentially on the groove tips. The average transmittance for the crossed polarizers in the 8-μ to 20-μ region was less than 1%. The degree of polarization was insensitive to a wide range of incidence angles. Data showing the spectral polarization efficiency as a function of wavelength are presented.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Bird, M. Parrish, J. Opt. Soc. Am. 50, 886 (1960).
    [CrossRef]
  2. W. K. Pursley, University of Michigan, doctoral dissertation (1956).
  3. G. Rupprecht, D. M. Ginsberg, J. D. Leslie, J. Opt. Soc. Am. 52, 665 (1962).
    [CrossRef]

1962 (1)

1960 (1)

J. Opt. Soc. Am. (2)

Other (1)

W. K. Pursley, University of Michigan, doctoral dissertation (1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Evaporation of conductive lines on a diffraction grating to produce a wire grid polarizer. The diffraction grating is used only as a method of denning the lines.

Fig. 2
Fig. 2

The relationship between polarization percentage and transmittance as a function of incidence angle.

Tables (2)

Tables Icon

Table I Polarizer Spectral Transmittance and Polarization Percentage (Irtran 2 Substrate)

Tables Icon

Table II Polarizer Spectral Transmittance and Polarization Percentage (Irtran 4 Substrate)

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

P 0 = ( 1 / 2 ) P ( T r + T h ) ,
P υ = ( 1 / 2 ) P ( T h T 1 + T υ T 2 )
P h = ( 1 / 2 ) P ( T h T 2 + T υ T 1 ) .
( P h + P υ ) / P 0 = T 1 + T 2 .
P = ( 1 / 2 ) P ( T h T 1 T 2 + T υ T 1 T 2 ) ,
P = P 0 T 1 T 2
P / P 0 = T 1 T 2 .
T 1 = 1 2 P h + P υ P 0 { 1 + [ 1 4 P P 0 ( P h + P υ ) 2 ] ½ } ,
T 2 = 1 2 P h + P υ P 0 { 1 [ 1 4 P P 0 ( P h + P υ ) 2 ] ½ } .
P ( % ) = 100 T 1 T 1 + T 2 = 50 { 1 + [ 1 4 P P 0 ( P h + P υ ) 2 ] ½ } .
P 0 = ( 1 / 2 ) P ( T υ + T h ) .
P υ a = ( 1 / 2 ) P ( T h T 1 a + T υ T 2 a ) ,
P h a = ( 1 / 2 ) P ( T h T 2 a + T υ T 1 a ) ,
P υ b = ( 1 / 2 ) P ( T h T 1 b + T υ T 2 b ) ,
P h b = ( 1 / 2 ) P ( T h T 2 b + T υ T 1 b ) .
P υ a υ b = ( 1 / 2 ) P ( T h T 1 a T 1 b + T υ T 2 a T 2 b ) ,
P h a υ b = ( 1 / 2 ) P ( T h T 2 a T 1 b + T υ T 1 a T 2 b ) ,
P υ a h b = ( 1 / 2 ) P ( T h T 1 a T 2 b + T υ T 2 a T 1 b ) ,
P h a h b = ( 1 / 2 ) P ( T h T 2 a T 2 b + T υ T 1 a T 1 b ) .
( P h a + P υ a ) / P 0 = T 1 a + T 2 a ,
( P h b + P υ b ) / P 0 = T 1 b + T 2 b .
T 1 a [ T 2 b ( P υ a υ b + P h a h b ) T 1 b ( P h a υ b + P υ a h b ) ] T 2 a [ T 2 b ( P h a υ b + P υ a h b ) T 1 b ( P υ a υ b + P h a h b ) ] = 0 .
T 1 a [ T 2 b ( P h a h b P υ a υ b ) T 1 b ( P h a υ b P υ a h b ) ] = T 2 a [ T 1 b ( P υ a υ b + P h a h b ) T 2 b ( P h a υ b P υ a h b ) ] .
T 2 b 2 ( P υ a υ b P υ a h b P h a h b P h a υ b ) + T 1 b T 2 b ( P h a h b 2 P υ a υ b 2 + P h a υ b 2 P υ a h b 2 ) + T 1 b 2 ( P υ a h b P υ a υ b P h a υ b P h a h b ) = 0 .
A = P υ a υ b P υ a h b P h a h b P h a υ b , B = P h a h b 2 P r a υ b 2 + P h a υ b 2 P υ a h b 2 , C = P υ a h b P υ a υ b P h a υ b P h a h b , D = ( P υ b + P h b ) / P 0 .
T 1 b = ( B D 2 A D ) + ( B D 2 A D ) 2 ( 4 ) ( A B + C ) A D 2 ( 2 ) ( A B + C ) ,
T 2 b = ( B D 2 A D ) ( B D 2 A D ) 2 ( 4 ) ( A B + C ) A D 2 ( 2 ) ( A B + C ) .

Metrics