Abstract

A simple experimental method for determining the degree of plane polarization of a far ultraviolet monochromator was developed and tested. This determination requires only a measurement of the reflectance at 45° angle of incidence with two or more orientations of the reflector about the optic axis. This procedure works at all wavelengths without requiring a detailed knowledge of the optical constants of the reflector material. The degree of plane polarization has been determined for a 0.5-m Seya-Namioka monochromator. The polarization has been found to depend strongly on wavelength and on both the grating and the grating overcoating.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. C. Walker, Appl. Opt. 3, 1457 (1964).
    [CrossRef]
  2. T. T. Cole, F. Oppenheimer, Appl. Opt. 1, 709 (1962).
    [CrossRef]
  3. R. Tousey, J. Opt. Soc. Am. 29, 235 (1939).
    [CrossRef]
  4. I. Simon, J. Opt. Soc. Am. 41, 336 (1951).
    [CrossRef]
  5. T. Sasaki, K. Ishiguro, Japan. J. Appl. Phys. 2, 289 (1963).
    [CrossRef]
  6. F. Abelès, Compt. Rend. 230, 1942 (1950).
  7. S. Robin, Compt. Rend. 236, 674 (1953).
  8. L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
    [CrossRef]
  9. D. K. Burge, H. E. Bennett, J. Opt. Soc. Am. 54, 1428 (1964).
    [CrossRef]
  10. R. P. Madden, L. R. Canfield, G. Hass, J. Opt. Soc. Am. 53, 620 (1963).
    [CrossRef]

1964 (3)

1963 (2)

R. P. Madden, L. R. Canfield, G. Hass, J. Opt. Soc. Am. 53, 620 (1963).
[CrossRef]

T. Sasaki, K. Ishiguro, Japan. J. Appl. Phys. 2, 289 (1963).
[CrossRef]

1962 (1)

1953 (1)

S. Robin, Compt. Rend. 236, 674 (1953).

1951 (1)

1950 (1)

F. Abelès, Compt. Rend. 230, 1942 (1950).

1939 (1)

Abelès, F.

F. Abelès, Compt. Rend. 230, 1942 (1950).

Bennett, H. E.

Burge, D. K.

Canfield, L. R.

L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
[CrossRef]

R. P. Madden, L. R. Canfield, G. Hass, J. Opt. Soc. Am. 53, 620 (1963).
[CrossRef]

Cole, T. T.

Hass, G.

L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
[CrossRef]

R. P. Madden, L. R. Canfield, G. Hass, J. Opt. Soc. Am. 53, 620 (1963).
[CrossRef]

Hunter, W. R.

L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
[CrossRef]

Ishiguro, K.

T. Sasaki, K. Ishiguro, Japan. J. Appl. Phys. 2, 289 (1963).
[CrossRef]

Madden, R. P.

Oppenheimer, F.

Robin, S.

S. Robin, Compt. Rend. 236, 674 (1953).

Sasaki, T.

T. Sasaki, K. Ishiguro, Japan. J. Appl. Phys. 2, 289 (1963).
[CrossRef]

Simon, I.

Tousey, R.

Walker, W. C.

Appl. Opt. (2)

Compt. Rend. (2)

F. Abelès, Compt. Rend. 230, 1942 (1950).

S. Robin, Compt. Rend. 236, 674 (1953).

J. Opt. Soc. Am. (4)

J. Phys. (1)

L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
[CrossRef]

Japan. J. Appl. Phys. (1)

T. Sasaki, K. Ishiguro, Japan. J. Appl. Phys. 2, 289 (1963).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured reflectances at 45° angle of incidence of gold and silica reflectors, using a 0.5-m Seya-Namioka monochromator with grating A (Au-coated). R1 values were taken with the plane of incidence perpendicular to the monochromator exit slit, R2 values with the plane of incidence parallel to the exit slit. Data were obtained only at the points indicated. The solid and dashed lines shown merely connect these points.

Fig. 2
Fig. 2

Calculated values of g(IV/IH) as a function of wavelength for grating A (Au-coated) from the R1 and R2 data for gold and silica reflectors shown in Fig. 1.

Fig. 3
Fig. 3

Values of g(IV/IH) as a function of wavelength determined for the same monochromator with grating B (Au-coated) replacing grating A (Au-coated). g values taken using grating A (shown in Fig. 2) are included for comparison.

Fig. 4
Fig. 4

g (IV/IH) determined as a function of wavelength for grating B after aluminum overcoating. Values were determined after 1 day and 9 days of aging of the aluminum overcoat, g values for grating B with Au-coating (see Fig. 3) are shown for comparison.

Tables (1)

Tables Icon

Table I Reflectance Data Obtained at 45° Angle of Incidence for Gold and Silica Reflectors Using a 0.5-m Seya-Namioka Monochromator with Grating A (Au-Coated)a

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

R 1 = ( I V R s + I H R p ) / ( I V + I H ) ,
R 2 = ( I V R p + I H R s ) / ( I V + I H ) .
R 1 = ( R p + g R s ) / ( 1 + g ) , R 2 = ( g R p + R s ) / ( 1 + g ) .
R p = R s 2 ( θ = 45 ° ) .
R 1 = [ R s ( R s + g ) ] / ( 1 + g ) , R 2 = [ R s ( 1 + g R s ) ] / ( 1 + g ) .
R 1 R 2 = R s + g 1 + g R s
R 1 + R 2 = R s 2 + R s ,
R s = 1 + [ 1 + 4 ( R 1 + R 2 ) ] 1 / 2 2 ,
g = R 2 [ 1 + 4 ( R 1 + R 2 ) ] 1 / 2 ( R 2 + 2 R 1 ) R 1 [ 1 + 4 ( R 1 + R 2 ) ] 1 / 2 ( R 1 + 2 R 2 ) .
P = I V I H I V + I H = g 1 g + 1 .
R 1 = [ I a sin 2 θ + ( I b / 2 ) ] R s + [ I a cos 2 θ + ( I b / 2 ) ] R p I a + I b ,
R 2 = [ I a cos 2 θ + ( I b / 2 ) ] R s + [ I a sin 2 θ + ( I b / 2 ) ] R p I a + I b .
G = I a + ( I b / 2 ) I b / 2 .
R 1 = [ ( G 1 ) sin 2 θ + 1 ] R s + [ ( G 1 ) cos 2 θ + 1 ] R p G + 1 , R 2 = [ ( G 1 ) cos 2 θ + 1 ] R s + [ ( G 1 ) sin 2 θ + 1 ] R p G + 1 .
R P = R s 2 .
R 1 = R s [ ( G 1 ) sin 2 θ + 1 + R s ( G 1 ) cos 2 θ + R s ] G + 1 , R 2 = R s [ ( G 1 ) cos 2 θ + 1 + R s ( G 1 ) sin 2 θ + R s ] G + 1 .
R 1 R 2 R 1 + R 2 = ( G 1 ) ( R s 1 ) cos 2 θ ( R s + 1 ) ( G + 1 ) .
R s = 1 + [ 1 + 4 ( R 1 + R 2 ) ] 1 / 2 2 .
R 1 R 2 R 1 + R 2 = ( G 1 ) { 3 + [ 1 + 4 ( R 1 + R 2 ) ] 1 / 2 } cos 2 θ ( G + 1 ) { 1 + [ 1 + 4 ( R 1 + R 2 ) ] 1 / 2 } .
R 3 R 4 R 3 + R 4 = ( G 1 ) { 3 + [ 1 + 4 ( R 3 + R 4 ) ] 1 / 2 } cos 2 ( θ α ) ( G + 1 ) { 1 + 4 ( R 3 + R 4 ) ] 1 / 2 } .
R 3 R 4 R 1 R 2 = cos 2 ( θ α ) cos 2 θ .
( R 3 R 4 ) / ( R 1 R 2 ) = tan 2 θ .
G 1 G + 1 = | [ ( R 1 R 2 ) 2 + ( R 3 R 4 ) 2 ] 1 / 2 { 1 + [ 1 + 4 ( R 1 + R 2 ) ] 1 / 2 } ( R 1 + R 2 ) { 3 + [ 1 + 4 ( R 1 + R 2 ) ] 1 / 2 } | ,

Metrics