Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Boyd, J. P. Gordon, Bell Syst. Tech. J. 40, 489 (1961).
  2. S. A. Collins, Appl. Opt. 3, 1263 (1964).
    [CrossRef]
  3. D. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964).
    [CrossRef]
  4. W. K. Kahn, in Proceedings of the Symposium on Quasi-Optics (Polytechnic Press, New York, 1964), p. 399.

1964 (2)

1961 (1)

G. D. Boyd, J. P. Gordon, Bell Syst. Tech. J. 40, 489 (1961).

Boyd, G. D.

G. D. Boyd, J. P. Gordon, Bell Syst. Tech. J. 40, 489 (1961).

Collins, S. A.

Gordon, J. P.

G. D. Boyd, J. P. Gordon, Bell Syst. Tech. J. 40, 489 (1961).

Herriott, D.

Kahn, W. K.

W. K. Kahn, in Proceedings of the Symposium on Quasi-Optics (Polytechnic Press, New York, 1964), p. 399.

Kogelnik, H.

Kompfner, R.

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

G. D. Boyd, J. P. Gordon, Bell Syst. Tech. J. 40, 489 (1961).

Other (1)

W. K. Kahn, in Proceedings of the Symposium on Quasi-Optics (Polytechnic Press, New York, 1964), p. 399.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Spherical mirror resonator and equivalent sequence of lenses.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

( a N + 1 b N + 1 ) = T ( a N b N ) ,
T = ( 1 l 0 1 ) ( 1 0 - 2 c 1 ) ( 1 l 0 1 ) = ( 1 - 2 l c 2 l ( 1 - l c ) - 2 c 1 - 2 l c ) ,
cos θ = 1 - 2 l c ,
T = ( cos θ Z sin θ - Y sin θ cos θ ) ,
Z = Y - 1 = l 1 - l c l c = l cot θ 2 .
T + p T = p ,
p = ( 1 0 0 Z 2 ) .
( a N b N ) + ( 1 0 0 Z 2 ) ( a N b N ) = ( a 0 b 0 ) + ( 1 0 0 Z 2 ) ( a 0 b 0 )
( y - x d y d x ) 2 + Z 2 ( d y d x ) 2 = a 2 ,
a N = y - x d y d x , b N = d y d x .
y 2 a 2 - x 2 Z 2 = 1 ,
2 y = B k [ 1 + ( 2 x B ) 2 ]
R = B 2 [ 1 + ( 2 x B ) 2 2 x B ] ,
y 2 ( 1 2 B k ) 2 - x 2 ( B 2 ) 2 = 1 ,
a = 1 2 B k             and             Z = B 2 .

Metrics